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Abstract

Motivation: MEDLINE is the primary bibliographic database maintained by National Library of Medicine
(NLM). MEDLINE citations are indexed with Medical Subject Headings (MeSH), which is a controlled
vocabulary curated by the NLM experts. This greatly facilitates the applications of biomedical research
and knowledge discovery. Currently, MeSH indexing is manually performed by human experts. To reduce
the time and monetary cost associated with manual annotation, many automatic MeSH indexing systems
have been proposed to assist manual annotation, including DeepMeSH and NLM’s official model Medical
Text Indexer (MTI). However, the existing models usually rely on the intermediate results of other models
and suffer from efficiency issues. We propose an end-to-end framework, MeSHProbeNet (formerly named
as xgx), which utilizes deep learning and self-attentive MeSH probes to index MeSH terms. Each MeSH
probe enables the model to extract one specific aspect of biomedical knowledge from an input article, thus
comprehensive biomedical information can be extracted with different MeSH probes and interpretability
can be achieved at word level. MeSH terms are finally recommended with a unified classifier, making
MeSHProbeNet both time efficient and space efficient.
Results: MeSHProbeNet won the first place in the latest batch of Task A in the 2018 BioASQ challenge.
The result on the last test set of the challenge is reported in this paper. Compared with other state-of-
the-art models, such as MTI and DeepMeSH, MeSHProbeNet achieves the highest scores in all the
F-measures, including Example Based F-Measure, Macro F-Measure, Micro F-Measure, Hierarchical
F-Measure and Lowest Common Ancestor F-measure. We also intuitively show how MeSHProbeNet is
able to extract comprehensive biomedical knowledge from an input article.

Contact: gx5bt@virginia.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
MEDLINE1, the primary component of PubMed2, is a bibliographic
database maintained by U.S. National Library of Medicine (NLM).
As the online counterpart to MEDLARS (MEDical Literature Analysis

1 https://www.nlm.nih.gov/bsd/medline.html
2 https://www.ncbi.nlm.nih.gov/pubmed/

and Retrieval System), MEDLINE currently covers more than 5,200
worldwide journals, and contains more than 24 million references to
journal articles in life sciences with a concentration on biomedicine.
A distinctive feature of MEDLINE citations is that they are indexed
with NLM Medical Subject Headings (MeSH)3. The MeSH thesaurus
is a controlled vocabulary curated by the NLM experts and used
for indexing, cataloging and searching for biomedical articles and
information (Coordinators, 2016; Nelson et al., 2004). Thus accurate

3 https://www.nlm.nih.gov/mesh/meshhome.html
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MeSH indexing greatly facilitates biomedical research and knowledge
discovery (Gopalakrishnan et al., 2017; Xun et al., 2017c; Jha et al., 2017).

Currently, MeSH indexing for MEDLINE is mainly performed by
the human experts in NLM. They have to go through the full text of
each biomedical article to assign suitable MeSH terms. This ensures high
accuracy of MeSH indexing but inevitably renders it very expensive. It
is estimated that the average cost of annotating one biomedical article is
around $9.4 (Mork et al., 2013). More than 813,500 citations were added
to MEDLINE in the year of 2017, and this number is rapidly increasing
by the year. Apart from the huge monetary cost, manual MeSH indexing
could also cause a possible delay before a newly published biomedical
article gets annotated. This presents a challenge to the NLM experts to
annotate biomedical articles efficiently and promptly.

Therefore, a system that can automatically annotate biomedical articles
with relevant MeSH terms or assist human experts could be of great help.
To this end, NLM has developed Medical Text Indexer (MTI) (Aronson
et al., 2004; Mork et al., 2013, 2014). MTI takes the title and abstract of an
article as the input and outputs relevant MeSH terms. MTI mainly consists
of two modules: MetaMap Indexing (MMI) and PubMed-Related Citations
(PRC). MetaMap (Aronson and Lang, 2010) is a software tool to extract
biomedical concepts from the text. MMI recommends MeSH terms based
on the biomedical concepts discovered by MetaMap. PRC recommends
MeSH terms by looking at the MeSH annotations of similar citations in
MEDLINE found by the PubMed-Related Articles (PRA) algorithm (Lin
and Wilbur, 2007). The two sets of MeSH terms are combined to generate
the final list of MeSH recommendations.

In order to continue to advance the development of MeSH indexing
systems, the BioASQ challenge4 on biomedical semantic indexing and
question answering is held every year since 2013 (Tsatsaronis et al.,
2015). One of the two BioASQ tasks is to annotate new MEDLINE
documents with relevant MeSH terms before MEDLINE curators annotate
them manually. As new manual annotations become available, they are
used to evaluate the performance of participating systems. Many new
MeSH indexing systems have been proposed since then, e.g., MetaLabeler
(Tang et al., 2009), MeSHLabeler (Liu et al., 2015) and DeepMeSH
(Peng et al., 2016). MetaLabeler trains an independent binary classifier
for each MeSH term; MeSHLabeler proposes to integrate MetaLabeler
with multiple evidence such as similar publications and term frequencies;
and DeepMeSH is an improved version of MeSHLabeler by incorporating
deep semantics in the word embedding space (Mikolov et al., 2013; Yuan
et al., 2017, 2018). They also have another classifier to determine the
number of MeSH terms to recommend.

Formally speaking, MeSH indexing is a multi-label classification task,
where each MeSH term can be regarded as a class label and each article
can be labeled with multiple MeSH terms. Compared with regular multi-
label classification problems, the large size of MeSH vocabulary and
the imbalanced nature of different MeSH terms pose more challenges
to the MeSH indexing problem. Currently there are more than 28,000
distinct MeSH terms and new MeSH terms are added to the vocabulary
every year. The most frequent MeSH term “humans” appears around
8,000,000 times in MEDLINE citations, while there are hundreds of
infrequent terms that appear less than 10 times. These challenges have
been taken into consideration by the previous researchers when designing
their MeSH indexing systems. However, there are some other challenges
and limitations that previous systems seem to have overlooked. First, the
biomedical articles are sequences in nature, but most previous systems
are based on models that cannot be easily used for sequential modeling in
an end-to-end fashion, such as K-Nearest-Neighbors (KNN) and Support
Vector Machine (SVM). Second, most previous systems train independent

4 http://bioasq.org/

classifiers for each MeSH term, resulting in extremely long training
time, high disk usage and inability to collaboratively train the classifier
and exploit the correlation between different MeSH terms at the same
time. Third, every time a new biomedical article is added, the previous
MeSH indexing systems need to find similar articles from the MEDLINE
database. In other words, millions of MEDLINE articles have to be stored
with the system and a thorough search has to be done for each indexing.
This further exacerbates the time and space consumption for the existing
systems.

Deep learning is a family of machine learning methods that employ
multiple processing layers to learn representations of data with multiple
levels of abstraction (LeCun et al., 2015). Attention mechanism (Bahdanau
et al., 2014; Vaswani et al., 2017) including self-attention (Lin et al.,
2017) enables deep learning models to selectively pay attention to different
parts of the input and provides interpretability. Deep learning and attention
mechanism have improved the state-of-the-art in many research fields such
as machine translation (Bahdanau et al., 2014) and text classification (Lin
et al., 2017).

Inspired by the aforementioned challenges and the rapid development
of deep learning techniques, we propose an end-to-end deep framework for
this multi-label classification task. We propose to train a unified classifier
instead of a large number of independent classifiers, thus the efficiency
is improved and the correlation between different MeSH terms can be
learned simultaneously. More specifically, the new framework is a self-
attentive deep neural network classifier. The proposed model contains three
major components: a bidirectional Recurrent Neural Network (RNN), a
number of self-attentive MeSH probes and a multi-view neural classifier.
The proposed model is able to extract different aspects of biomedical
knowledge from an input article. RNNs are naturally suitable for sequential
text data, and by mapping the input text into the embedding space, RNNs
can benefit from word embeddings that carry semantic regularities (Bengio
et al., 2006; Mikolov et al., 2013; Xun et al., 2017b,a). By feeding RNN
hidden states to self-attentive MeSH probes, each article can be converted
into a fixed-dimension feature matrix. The multi-view neural classifier is
a unified multi-label classifier that considers the extracted feature from
the input text, the journal information as well as the correlation between
different MeSH terms. The new framework is named MeSHProbeNet (in
the 2018 BioASQ challenge, we used the name xgx for our system). To
sum up, MeSHProbeNet has the following advantages:

• MeSHProbeNet is an end-to-end framework that does not rely on any
other existing MeSH indexing systems or software tools.

• MeSHProbeNet is a unified multi-label classifier, thus very efficient in
terms of training time consumption and disk usage for this large-scale
MeSH indexing task.

• The bidirectional RNN of MeSHProbeNet is able to make use of
the word embedding semantics and capture the context-dependent
information via sequence modeling.

• The MeSH probes on top of the RNN allow us to extract different
aspects of biomedical knowledge from the input article and represent
it as a fixed-dimension feature matrix.

• The multi-view classifier considers both the extracted features and the
journal information.

• MeSHProbeNet, as a unified multi-label classifier, simultaneously
exploits the correlation between different MeSH terms as it is being
trained.

The efficacy of MeSHProbeNet was demonstrated in Task A of the
2018 BioASQ challenge. We also provide an interpretability visualization
of the MeSH probes to show how the proposed model selectively pays
attention to different parts of the input article and how different aspects of
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Fig. 1. The framework of MeSHProbeNet.

biomedical knowledge are extracted by the MeSH probes. We also perform
an ablation study of MeSHProbe to show the importance of MeSH probes.

2 Methodology
The overview of our proposed MeSHProbeNet model is shown in Figure
1. MeSHProbeNet is a self-attentive deep neural network, which is able to
predict a set of MeSH terms for a biomedical article based on its textual
content and journal information. The textual content of a biomedical article
includes the title, abstract and body (in the challenge dataset, only the title
and abstract are available). The journal information refers to the name of
the journal it was published in.

Briefly speaking, MeSHProbeNet consists of three main components.
The first component is a bidirectional RNN on the textual contents of
biomedical articles. The second component is a set of self-attentive MeSH
probes, which are responsible for extracting useful information from the
RNN hidden states and converting articles of various lengths into fixed-
dimension feature matrices. The third component is a multi-view neural
classifier which combines the extracted textual information with the journal
information, and generates a set of relevant MeSH terms.

We will introduce our model according to how to convert the textual
contents into fixed-dimension matrices and how to recommend MeSH
terms based on the combined information.

2.1 Bidirectional RNN

The bidirectional RNN reads the textual contents of a biomedical article,
i.e., the concatenation of the title and the abstract, and generates a hidden
state for each word in the textual contents, as shown in the bottom left
part of Figure 1. RNNs model texts in a sequential fashion and are
able to capture the dependency between adjacent words. Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated
Recurrent Unit (GRU) (Cho et al., 2014) have proven to be more effective
in modeling long sequences than the vanilla RNN (Chung et al., 2014).
In MeSHProbeNet, we use a bidirectional GRU, as GRUs are simpler and
perform on par with LSTMs. Suppose we have a sequential text which has

T words as the input, i.e., the concatenation of the title and the abstract
in our case. The first step is to represent the text as a sequence of T word
embeddings:

X = {x1,x2, ...,xt, ...,xT },

wherext is aDw dimensional real-valued vector, denoting the embedding
for the tth word in the input article. Thus a biomedical article can be
represented as a T -by-Dw matrix, which is the concatenation of all the
word embeddings in it. Then we feed article embedding matrix X to the
bidirectional GRU:

−→
ht =

−−−→
GRU(xt,

−−−→
ht−1),

←−
ht =

←−−−
GRU(xt,

←−−−
ht+1),

where
−→
ht and

←−
ht are two U dimensional real-valued vectors, standing for

the hidden states for the tth word in normal direction and reverse direction,
respectively. By concatenating

−→
ht and

←−
ht, we derive a 2U dimensional

hidden state ht = [
−→
ht,
←−
ht] which includes both the normal direction

sequential information and the reverse direction sequential information at
time stamp t. Hence, the hidden states of the input article can be represented
as a T -by-2U matrix:

H = [h1;h2; ...;ht; ...;hT ].

2.2 Self-attentive MeSH Probes

One simple way to obtain the summary of the input article is to use the
last hidden states of the bidirectional GRU: [

−→
ht;
←−
h1]. Although GRUs

have proven to be more effective at modeling long sequences than the
vanilla RNNs, their performances on really long sequences are still limited,
such as the entire title and abstract text in our case. Hence, we propose
to use a self-attentive MeSH probe mechanism to extract comprehensive
aspects of biomedical information from the input article. Each MeSH probe
carries one aspect of biomedical knowledge, and only pays attention to
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the RNN hidden states that contain related information. For instance, a
MeSH probe that carries disease related knowledge is able to selectively
extract the RNN hidden states that are related to disease. Specifically,
one MeSH probe generates a weight vector for the RNN hidden states
and multiply the RNN hidden states with the weight vector. Therefore,
the resulting weighted RNN hidden state can be regarded as a summation
of the input biomedical article with respect to the biomedical knowledge
carried by the MeSH probe. With the help of the MeSH probe, biomedical
articles of different lengths can be represented as a fixed-length vector
containing related information. In fact, we can have multiple MeSH probes
to cover multiple aspects of biomedical knowledge. Hence, given a certain
number of MeSH probes, we can obtain a fixed-dimension output matrix
that carries corresponding biomedical knowledge extracted from the input
article.

More specifically, a MeSH probe is an inherent vector of
MeSHProbeNet, which is associated with one specific aspect of biomedical
knowledge. As with the GRU hidden state, the dimension of a MeSH probe
is also 2U . The goal of a MeSH probe is to extract related biomedical
information from the input article and output a fixed-length vector. We
achieve that by calculating a weighted combination of the T GRU hidden
states. In particular, given MeSH probe pn, we first take all the GRU
hidden statesH as the input and then compute a normalized weight vector
αn:

αn = softmax(pnH
T ).

Hence,αn is a 1-by-T vector where element αnt indicates the weight
for the tth GRU hidden state and all the weights sum up to 1:

αnt =
exp(pn · ht)∑T

t′=1 exp(pn · ht′ )
.

By taking the inner product between MeSH probe pn and each GRU
hidden state, MeSH probe pn assigns higher weights and pays more
attention to the hidden states that carry related biomedical knowledge.
Then we can use the weighted summation of the GRU hidden states
according to the weights in αn to represent the input article, denoted
as context vector cn,:

cn = αnH =
T∑

t=1

αnt · ht.

Context vector cn is a 2U dimensional vector, which pays attention
only to the parts of the input article related to MeSH probe pn. However,
for a research article, one MeSH probe is normally insufficient as there are
multiple aspects in it. For example, a research article about Alzheimer’s
disease is probably also related to aging and treatments. Therefore, to
get a more comprehensive representation of the input article, we need
multiple MeSH probes to pay attention to different aspects of the article,
for instance, one probe for disease, one probe for treatments, another probe
for anatomy, and so on. As illustrated by the top left part of Figure 1, if we
want to examineN different aspects of the input article, N MeSH probes
are required:

P = [p1;p2; ...;pN ],

where P is a N -by-2U matrix composed of N different MeSH probes.
Accordingly, we can obtain a N -by-T weight matrix A, where each row
αn denotes the weight vector with respect to each MeSH probe pn:

A = softmax(PHT ),

where the softmax function is performed along the second dimension of
the input. Hence, with the help of multiple MeSH probes, we are able to

extract different aspects of biomedical knowledge from the input article,
and represent it with a N -by-2U context matrixC:

C = AH.

2.3 Multi-view Neural Classifier

With the help of the bidirectional RNN and the MeSH probes, now we are
able to convert a biomedical article of arbitrary length to a fixed-dimension
context matrix, where each row represents one particular aspect of the input
article. In fact, for each input article, we also have its journal information
in addition to the textual content. This journal information is quite useful,
as biomedical journals typically have a definite research topic and focus on
a specific research domain. Therefore, it is natural to expect that research
papers published in the same journal tend to be annotated with MeSH terms
related to the journal’s research focus. To take the journal information into
consideration, our multi-view neural classifier has a journal embedding
module, where each journal name can be converted to a unique vector of
length Dj . Thus, by reshaping the extracted context matrixC to a vector
and concatenating it with the journal embedding, we are able to obtain
a context vector of length N ∗ 2U + Dj that carries all the available
information of the input article: the title, the abstract and the journal
information. We denote this comprehensive context vector byE.

Our task is to annotate a biomedical article with suitable MeSH terms.
Hence, having extracted comprehensive context vector E from the input
article, what we need to do next is to learn a function f that maps context
vector E to V conditional probability distributions, where V is the size
of the MeSH vocabulary. The output of f is a vector whose ith element
estimates the probability that the ith MeSH term should be assigned to the
current article:

P (mi = 1|E) = f(i,E),

where mi denotes the ith MeSH term in the MeSH vocabulary. Function
f could be implemented by a feed forward neural network. We employ a
three layer neural network, whose first layer is the input context vectorE,
second layer is the hidden layer with ReLU activation and third layer is the
output layer. More precisely, the multi-layer neural network calculates the
following function, with a sigmoid output layer to guarantee each output
neuron being a probability in the range of [0, 1]:

f(E) = σ(W 2ReLU(W 1E + b1) + b2), (1)

where σ(·) is the element-wise sigmoid function, W 1 and W 2 are the
weight matrices for each layer, and b1, b2 are the biases. During training,
each biomedical article comes with several manually annotated MeSH
terms. So it can be regarded as a multi-label classification task, where the
ground truth label is a V -length binary vector whose ith element is set
to 1 if the ith MeSH term is assigned to the current article and set to 0
otherwise. We represent this ground truth vector by g. Therefore, given
a biomedical article k, the objective is to minimize the following binary
cross entropy loss:

Lk = −
V∑

i=1

(g[i] · log(f(i,E)) + (1− g[i]) · log(1− f(i,E))).

Let K be the total number of articles in the training dataset, then the
overall training objective is:

L =
K∑

k=1

Lk. (2)

Note that unlike most previous works that train a binary classifier for
each MeSH term separately, we train a unified multi-label classifier that
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considers all the MeSH terms simultaneously. The advantages of training
a unified multi-label classifier are manifold. First, the efficiency for both
training and predicting can be drastically improved by learning a unified
classifier as there are more than 28,000 distinct MeSH terms. Second,
by learning a unified classifier, the semantics of the word embeddings
and journal embeddings can be shared by all MeSH terms. Third, the
correlation between different MeSH terms is automatically exploited and
carried by neural network weights W 1 and W 2. If one MeSH term
frequently co-occurs with other MeSH terms, for example, “Alzheimer
disease” is often accompanied by “aged, 80 and over”, this co-occurrence
will influence the corresponding neurons inW 1 andW 2 simultaneously,
and thus the correlation and dependency relationship can be captured.

Infrequent MeSH terms also benefit from this unified architecture.
Hundreds of infrequent terms appear in less than 10 articles. Therefore, if
an independent classifier is trained for each infrequent term, the classifier
inevitably suffers from the lack of training data and would encounter tons of
out-of-vocabulary words during prediction. By sharing parameters across
all MeSH terms, such as word embeddings and weight matrices, the unified
classifier is able to tackle the problem of lacking training data and the out-
of-vocabulary problem for infrequent MeSH terms. In addition, infrequent
terms can further take advantages of the correlation information in the
unified classifier, especially if an infrequent term always co-occurs with
some specific frequent terms.

The free parameters of the whole model are the word embeddings,
the GRU weight matrix, the GRU bias, the MeSH probes, the journal
embeddings, the fully connected neural network weight matrices and
biases. Let θ denote the overall free parameter set. Then training can be
achieved by looking for θ that minimizes the training corpus binary cross
entropy loss in Eq. 2 via stochastic gradient descent. Stochastic gradient
descent iteratively updates the free parameters after feeding the kth article
of the training corpus:

θ ← θ − η
∂Lk

∂θ
,

where η is the learning rate.
In the prediction phase, there are two approaches to determine the final

MeSH terms based on the output of function f in Eq. 1. One approach is
to find the optimal thresholds for each MeSH term on a held-out validation
set. The other approach is to learn another neural network to predict the
number of related MeSH terms given a biomedical article. In practice, we
adopt the first approach in the prediction phase, as it is more efficient and
intuitive.

3 Experiments
We carry out experiments on the large-scale MeSH indexing task to
demonstrate the efficacy of our MeSHProbeNet model. To illustrate how
MeSHProbeNet extracts different aspects of biomedical knowledge from
the input articles, we visualize MeSH probes and their attentions on
different parts of the input sequence. To investigate the quality of the
MeSH terms recommended by MeSHProbeNet, we participated in the
2018 BioASQ challenge and compare its performance with several state-
of-the-art MeSH indexing systems, including MTI and DeepMeSH. Our
system won the first place in the third batch of the challenge.

3.1 Dataset and Experimental Settings

The training dataset is downloaded from the challenge webpage5. It
contains 13,486,072 biomedical articles which are annotated with relevant
MeSH terms by the PubMed human experts. On average, 12.69 MeSH

5 http://participants-area.bioasq.org/general_information/Task6a/

terms are assigned to each article. In total, 28,340 distinct MeSH terms are
covered by the training dataset. For each article in the training dataset, we
have the unique identifier of the article (PMID), the title of the article, the
abstract of the article, the year the article was published, the journal the
article was published in and a set of MeSH terms assigned to the article.

In the preprocessing step, all non-alphanumeric characters, stop words
and words with a total frequency lower than 10 are removed, and all words
are converted to lowercase. The dimensionalities of word embeddings and
journal embeddings are set to 250 and 100, respectively. The number of
GRU layers is set to 2. The size of the GRU hidden unit is set to 200 per
direction, thus 400 for a bidirectional unit. The dimensionality of MeSH
probes is also set to 400 accordingly. The number of different MeSH probes
that the model contains is 25. The multi-view neural classifier has a hidden
layer of 10000 units. We deploy 0.5 dropout, 0.00001 L2 regularization
and snapshot ensemble (Huang et al., 2017) to prevent over-fitting. The
learning rate for stochastic gradient descent is set to 0.0005 and we also
clip the gradients whose values are larger than 5.

3.2 MeSH Probe Visualization

Interpretability is one of the advantages of MeSHProbeNet. For the users
of automatic MeSH indexing models, a good model should not only be
accurate, but also be able to tell them which parts of the input support the
recommended MeSH terms. For instance, the human indexers can achieve
higher annotation efficiency with the help of interpretable MeSH indexing
models, as this interpretability of automatic MeSH indexing models can
provide them with evidence for adding or deleting a recommended MeSH
term.

The interpretability of MeSHProbeNet can be achieved through
examining the attention weight matrixA. Each rowan in attention weight
matrix A represents the weight vector with respect to MeSH probe pn.
Each element in weight vector an corresponds to how much attention
MeSH probe pn pays to each GRU hidden state and each word. Thus we
can visualize the attention by drawing a heat map of the weight vector.

It is worth mentioning that another advantage of MeSHProbeNet is
its unsupervised nature: the MeSH probes are learned in a completely
unsupervised fashion. The training objective function drives the MeSH
probes to extract comprehensive aspects of biomedical knowledge with
each probe focusing on one specific aspect. In other words, we do not
need any prior knowledge, external knowledge or human guidance for the
MeSH probes. The probes are automatically learned and are able to capture
biomedical semantics during training and provide interpretability.

We select two articles from the last test set of the 2018 BioASQ
challenge, whose PMIDs are “29439706” and “27130306”, to visualize
MeSH probes and show the interpretability in Figure 2. For article
29439706, the ground truth MeSH terms assigned by human curators
are “biomedical research”, “disease eradication”, “HIV infections”,
“humans”, “public health”, and “terminology as topic”; and the MeSH
terms assigned by MeSHProbeNet are “humans”, “HIV infections”,
“research”, “disease eradication”, “public health”, “AIDS vaccines”,
“HIV-1” and “anti-HIV agents”. For article 27130306, the ground truth
MeSH terms assigned by human curators are “Alzheimer disease”, “Bayes
theorem”, “Europe”, “humans”, “incidence” and “prevalence”; and the
MeSH terms assigned by MeSHProbeNet are “prevalence”, “humans”,
“male”, “female”, “Alzheimer disease”, “aged”, “aged, 80 and over”,
“incidence”, “Bayes theorem” and “Europe”.

We first demonstrate how MeSH probe No.2 extracts disease related
information from different articles in Figures 2a and 2b. The values below
each word denote the normalized weights. We can see that MeSH probe
No.2 pays more attention to words like “HIV”, “virus” and “disease”. Some
words such as “incidence” and “background” also have high attention
weights. This is because of the sequential nature of RNNs and the system
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6 G. Xun et al.

(a) MeSH probe No.2 extracts disease related information from article 29439706.

(b) MeSH probe No.2 extracts disease related information from article 27130306.

(c) MeSH probe No.11 extracts Alzheimer’s related information from article 27130306.

Fig. 2. MeSH probe interpretability visualization.

recognizes those words as related words in the context of “disease”. Then in
Figures 2b and 2c, we demonstrate how two different MeSH probes extract
two different aspects of biomedical knowledge from the same article. As
we just mentioned, in Figure 2b MeSH probe No.2 extracts disease related
information. While in Figure 2c, MeSH probe No.11 extracts Alzheimer’s
related information. One can observe that in this article, MeSH probe No.2
is sensitive to words like “disease” and “epidemiology”, while MeSH probe
No.11 is sensitive to words like “Alzheimer’s” and “elderly”.

3.3 Evaluation Metrics

In order to evaluate MeSH indexing performance, two sets of measures
are used, one flat and one hierarchical.

The flat measures consist of accuracy and three sets of F-measure
based metrics: Example Based F-Measure (EBF), Macro F-Measure (MaF)
and Micro F-Measure (MiF). Accuracy represents the fraction of correct
predictions. EBF is computed in a per data point manner. For each predicted
label, only its score is computed, and then these scores are aggregated
over all the data points. EBF for each data point can be computed as the
harmonic mean of standard precision (EBP) and recall (EBR) for each
data point. MaF, Macro Precision (MaP) and Macro Recall (MaR) give
equal weight to each MeSH class. Frequent MeSH terms and infrequent
MeSH terms are equally important. Thus MaP and MaR are calculated as
the average precision and recall over all the MeSH classes. MiF, Micro
Precision (MiP) and Micro Recall (MiR) aggregate the contributions of
all MeSH classes to compute the average metric. Frequent MeSH terms
therefore have higher weights than infrequent MeSH terms. We can see that

different F-Measures have different focus, for example, MiF focuses more
on the frequent MeSH terms, while MaF treats all MeSH terms equally
regardless of their frequencies. Since the BioASQ challenge evaluates the
systems based on MiF, we will also take MiF as our major measure.

The MeSH vocabulary is organized in a hierarchical structure. Thus
hierarchical measures are also used to evaluate the performance, including
Hierarchical Precision (HiP), Hierarchical Recall (HiR), Hierarchical F-
Measure (HiF), Lowest Common Ancestor Precision (LCA-P), Lowest
Common Ancestor Recall (LCA-R) and Lowest Common Ancestor F-
measure (LCA-F) (Kosmopoulos et al., 2015).

3.4 Experimental Results

We show the comparison result of the proposed MeSHProbeNet model
with the default MTI, MTI First Line indexing (MTIFL) (Aronson et al.,
2004), DeepMeSH (Peng et al., 2016), AttentionMeSH (Jin et al., 2018),
iria (Ribadas et al., 2014), UMass Amherst T2T, MeSHmallow and Access
Inn MAIstro on the last test set of the 2018 BioASQ challenge. There are
15 test sets in total (one test set per week during the challenge) and the
complete results are available on the challenge webpage6 (please note that
we used the name xgx in the challenge). The main difference between
MTI and MTIFL is that MTIFL has higher precision by limiting its
recommendation to a smaller number of MeSH terms, while MTI balances
precision and recall, and achieves better F-measure.

6 http://participants-area.bioasq.org/results/6a/
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Table 1. Comparison results based on the flat measures

Models MiP MiR MiF EBP EBR EBF MaP MaR MaF Acc

Access Inn MAIstro 0.2351 0.3423 0.2788 0.2488 0.3558 0.2775 0.3942 0.4641 0.3905 0.1669
MeSHmallow 0.3798 0.2707 0.3161 0.3798 0.2661 0.3042 0.1333 0.0049 0.0037 0.1915

UMass Amherst T2T 0.5239 0.4759 0.4988 0.5408 0.4789 0.4881 0.4179 0.2526 0.2481 0.3392
iria 0.4654 0.5792 0.5161 0.4609 0.5929 0.5058 0.4271 0.4658 0.4147 0.3525

MTIFL 0.6730 0.5977 0.6332 0.6833 0.6121 0.6264 0.6377 0.5622 0.5408 0.4759
MTI 0.6475 0.6473 0.6474 0.6540 0.6648 0.6418 0.6086 0.6084 0.5667 0.4911

AttentionMeSH 0.6833 0.6447 0.6635 0.6853 0.6488 0.6497 0.6178 0.4943 0.4827 0.4982
DeepMeSH 0.6761 0.6517 0.6637 0.6767 0.6659 0.6544 0.6352 0.5455 0.5281 0.5020

MeSHProbeNet 0.7172 0.6611 0.6880 0.7193 0.6736 0.6789 0.6782 0.5804 0.5671 0.5310

Table 2. Comparison results based on the hierarchical measures

Models LCA-P LCA-R LCA-F HiP HiR HiF

Access Inn MAIstro 0.2722 0.3615 0.2964 0.4696 0.5921 0.5043
MeSHmallow 0.4000 0.2369 0.2871 0.5633 0.3287 0.3967

UMass Amherst T2T 0.4818 0.4087 0.4276 0.7094 0.5961 0.6262
iria 0.4251 0.4902 0.4443 0.6174 0.7290 0.6536

MTIFL 0.5662 0.5014 0.5172 0.7964 0.7186 0.7373
MTI 0.5510 0.5415 0.5325 0.7703 0.7647 0.7514

AttentionMesh 0.5627 0.5235 0.5290 0.7902 0.7396 0.7472
DeepMeSH 0.5643 0.5364 0.5366 0.7899 0.7555 0.7560

MeSHProbeNet 0.5901 0.5561 0.5596 0.8123 0.7714 0.7760

The comparison results based on the flat measures of each model are
reported in Table 1. The challenge allows each model to make at most 5
attempts to try out different settings, such as different initializations and
parameters, as a significance test. Our model consistently achieves the
best performance. To conserve space, we only show the best performance
score of each model here. Interested readers may refer to the complete
result on the challenge website. The best scores are highlighted in boldface
in Table 1. Compared with MTI, MTIFL has higher precision but lower
recall, resulting in low F-measures. DeepMeSH outperforms MTI in
terms of MiF score but its MaF score is not as good as MTI’s, which
means DeepMeSH pays more attention to the frequent MeSH terms
such as “humans”, “animals”, “male” and “female”. We can observe
that MeSHProbeNet achieves the highest scores in all F-Measures and
accuracy. Since MeSHProbeNet is able to capture the correlation between
different MeSH terms and MeSH indexing for infrequent terms can benefit
from this correlation information, MeSHProbeNet gains both the best MiF
and the best MaF scores.

The comparison results based on the hierarchical measures of each
model are reported in Table 2. As with the flat measure result, we also
only show the best performance score of each MeSH indexing model.
The best scores are highlighted in boldface. The hierarchical measures are
calculated based on the hierarchical structure of the MeSH vocabulary,
thus the semantic distance between MeSH terms is under consideration.
As with their performances on the flat measures, MTI achieves higher F-
Measures than MTIFL and DeepMeSH outperforms both of them. We can
see that MeSHProbeNet obtains the highest scores in all measures.

3.5 Ablation Studies on MeSH Probes

We have demonstrated strong empirical results of MeSHProbeNet. Now
we perform ablation experiments in order to better understand the
importance of the self-attentive MeSH probes. Since the 2018 BioASQ
challenge is closed and the challenge test sets are currently not available,
we split the dataset into training and test sets. The test set contains 7,000

articles and is used to evaluate the ablation models. All the models are
trained on this new training set.

To show the effect of MeSH probes, we include in the comparison
bi-GRU, which directly feeds the GRU output to the multi-view neural
classifier and uses no MeSH probes. To show the influence of different
numbers of MeSH probes, MeSHProbeNet models with 5, 15 and 25
MeSH probes are also included in the comparison, among which the
MeSHProbeNet-25 model has the same amount of MeSH probes as the
model we used in the challenge. All the other parameters, such as the
embedding dimension and the number of GRU layers, are the same as the
challenge model for each model.

The ablation results based on the flat measures and the hierarchical
measures are reported in Table 3 and Table 4, respectively. The best scores
are highlighted in boldface. One can observe that the self-attentive MeSH
probe mechanism significantly improves the performance. Adding more
MeSH probes is also helpful, although the improvement per added MeSH
probe becomes less and less significant as the number of MeSH probes
gets higher. Adding more probes will also increase the computation cost
and disk usage of the model.

3.6 Computational Efficiency

The training of MeSHProbeNet on the entire MEDLINE database can
be finished within 24 hours with one NVIDIA TITAN Xp GPU. Given
a new test set of 10,000 articles, the prediction takes less than 1 minute.
Compared with other state-of-the-art MeSH indexing models, for example,
DeepMeSH needs 1 week to train on 1 million articles and AttentionMeSH
needs 4 days to train on 3 million articles with 2 GPUs, this improved
training efficiency of MeSHProbeNet allows us to exploit the entire
database of more than 13 million annotated articles. Moreover, since
MeSHProbeNet does not need to store any article information to perform
KNN to find similar articles in the database, nor does it need to train
separate classifiers for more than 28,000 MeSH terms, the disk usage of
MeSHProbeNet is just about 1 GB.

4 Conclusion
We present an end-to-end MeSH indexing model MeSHProbeNet.
MeSHProbeNet participated in the 2018 BioASQ challenge and achieved
the best performance in the latest batch. MeSHProbeNet is a self-attentive
deep neural network classifier, which is able to extract different aspects of
biomedical knowledge from an input article with different MeSH probes,
and generate MeSH recommendations based on the extracted features,
journal information and MeSH correlations. The experimental results
demonstrate the effectiveness of MeSHProbeNet on both frequent and
infrequent MeSH terms.
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Table 3. Ablation results based on the flat measures

Models MiP MiR MiF EBP EBR EBF MaP MaR MaF Acc

bi-GRU 0.6691 0.6243 0.6459 0.6701 0.6357 0.6331 0.6228 0.4997 0.4937 0.4801
MeSHProbeNet-5 0.6978 0.6511 0.6736 0.6975 0.6660 0.6628 0.6500 0.5609 0.5485 0.5124
MeSHProbeNet-15 0.7072 0.6617 0.6837 0.7073 0.6770 0.6732 0.6675 0.5792 0.5670 0.5243
MeSHProbeNet-25 0.7094 0.6643 0.6861 0.7092 0.6801 0.6760 0.6732 0.5846 0.5706 0.5276

Table 4. Ablation results based on the hierarchical measures

Models LCA-P LCA-R LCA-F HiP HiR HiF

bi-GRU 0.5610 0.5111 0.5200 0.7935 0.7250 0.7380
MeSHProbeNet-5 0.5767 0.5341 0.5400 0.8064 0.7487 0.7583
MeSHProbeNet-15 0.5844 0.5434 0.5487 0.8118 0.7575 0.7660
MeSHProbeNet-25 0.5859 0.5465 0.5511 0.8129 0.7606 0.7681
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