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Abstract—Word embeddings are finding their increasing ap-
plication in a variety of biomedical Natural Language Processing
(bioNLP) tasks, ranging from drug discovery to automated
disease diagnosis. While these word embeddings in their entirety
have shown meaningful syntactic and semantic regularities, how-
ever, the meaning of individual dimensions remains elusive. This
becomes problematic both in general and particularly in sensitive
domains such as bio-medicine, wherein, the interpretability of
results is crucial to its widespread adoption. To address this
issue, in this study, we aim to improve the interpretability of pre-
trained word embeddings generated from a text corpora, and in
doing so provide a systematic approach to formalize the problem.
More specifically, we exploit the rich categorical knowledge
present in the biomedical domain, and propose to learn a
transformation matrix that transforms the input embeddings
to a new space where they are both interpretable and retain
their original expressive features. Experiments conducted on the
largest available biomedical corpus suggests that the model is
capable of performing interpretability that resembles closely to
the human-level intuition.

Index Terms—word embeddings, interpretability, biomedicine

I. INTRODUCTION

Modelling the lexical semantics behind a word has ac-

quired significant interest in the recent years [1]–[3]. As a

consequence of advances made in the research area of deep

learning, more recently, practitioners in the community have

applied neural network inspired language models (commonly

known as word embedding models [2]) to model the latent

structure present in the text, and produced more nuanced form

of word representations. Simply put, these word embeddings

models learn to generate dense, continuous, low-dimensional

vectors representation of words from raw, unannotated corpora

in a completely unsupervised manner. Such succinct form of

representation thesedays have become the “de-facto” word

representation for a multitude of downstream bioNLP tasks

such as disease diagnosis [4], drug re-purposing [5] and

hypotheses generation [6], [7].

Despite their considerable success and widespread adoption,

a drawback of these word embedding models lie in their

inability to provide meaningful interpretation of the individual

embedding dimensions. This is problematic because even

though we can comprehend the underlying mathematical prin-

ciples of such models, it is still important to understand what

*Equal contribution

exactly do these dimensions signify? What kind of properties

are being (and not being) captured by these dimensions?

As a simple illustration, consider the example of medical

concepts “Insulin” and “Diabetes mellitus” shown in Figure 1.

As it can be observed, the current word embedding models

can capture the semantic proximity between these concepts,

yet, they cannot answer questions like: “To what extent the

medical concept insulin captures the property of being a

pharmacological substance or a hormone ?”. In contrast, with

the aid of proposed transformation technique (Figure 1), we

can precisely answer such questions. The main advantage

of having such form of post-hoc reasoning is that these

interpretable representations might not only aid in generating

explainable answers to the sensitive downstream medical tasks

such as disease diagonosis [4], but also provide us with keen

insights into the nature of state-of-the-art embedding models

themselves. Motivated with these speculations, in this study,

we consider the problem of improving the interpretablity of

words embeddings learned over a particular text corpora.

Unlike numerous studies done on generating vector repre-

sentations, literature on learning interpretable word embed-

dings is relatively scarce: [8]–[10]. In general, the key idea

of these prior studies to improve the interpretability of vector

representations is by inducing sparsity in the word vector

dimensions [8]. Arguably, these studies made substantial ad-

vances, however, they still have a few inherent drawbacks.

First, either these models cannot be learned over pre-trained

word vectors available from the widely used embedding mod-

els such as Word2Vec [2]/GloVe [11] or they produce vectors

with much higher dimensions. Second, these studies did not

attempt to elucidate the particular conceptual notion (property)

being carried within these individual dimensions.

To mitigate these aforementioned issues, in this study,

we systematically formulate this problem of improving the

intepretability of word embeddings. Basically, the core idea

of the proposed model is to leverage upon the rich categor-

ical/taxonomic knowledge present in the biomedical domain

and learn a transformation matrix being sensitive to them.

As the available categorical knowledge is manually curated

and maintained by subject-matter-experts, our conjecture is

that the interpretability of word embeddings in terms of these

human-defined categories will reflect more proximity to the

human level interpretations. Towards this end, we propose a

novel framework that first infers the vector representation of
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Fig. 1: The original word embedding space (left) and the transformed embedding space (right).

categorical concepts and then learns a transformation matrix

that is able to transform the original word embeddings to a new

space where these aforementioned categorical concepts act as

their basis. Besides, the learning of transformation matrix is

performed in such a way that the expressive features of original

vectors are retained.

In this study our contributions can be summarized as:

1) We propose a novel framework for interpreting word

embeddings, that is capable of transforming any pre-

trained word embedding to a new space such that the

hidden conceptual meaning of individual dimensions are

revealed. To the best of our knowledge, we are among

the first to study the interpretability of word embedding

in the medical domain.

2) By leveraging upon the principles of dictionary learning

and exploiting the categorical knowledge present in the

biomedical domain, the proposed technique learns to

infer the categorical representations at a granular level.

II. RELATED WORK

Improving interpretability of word embeddings has been an

active area of study over the past few years [8], [10], [12]. The

initial study [12] proposed a non-negative matrix factorization

based technique, namely, Non-Negative Sparse Embedding

(NNSE) to learn the interpretable embeddings. While this

study elucidated the importance of studying interpretability

of word embeddings, yet, they were shown to suffer from

memory and scale issues. To alleviate this, [13] proposed to

learn interpretable embeddings in an online manner. In doing

so, their key idea was to adopt a neural network approach

to learn the word embeddings, and then employ an adaptive

gradient descent to accelerate their convergence.

Building upon the ideas of aforementioned studies, [8]

proposed a principled sparse coding technique to improve

the interpretability of word vectors. Basically, they utilized

sparse coding in a dictionary learning setting to obtain longer,

sparser and overcomplete vectors. A potential drawback of

this study is that it produces vectors of very high dimensions.

More recently, another study [14] adopted l1 regularization

into their learning objective to induce sparsity and learned

interpretable vectors. In general, the central notion behind

these sparsity inducing techniques is that they aim to increase

the sparseness in vectors, that then leads to better separability,

thereby, improving the interpretability. While crucial insights

were gained from these aforementioned studies, they still did

not focus on explicating the precise conceptual/categorical

meaning being carried within the individual dimensions. In

this study, by relying upon the principles of categorical the-

ory [15] and correspondingly exploiting the rich categorical

knowledge present in the medical domain we attempt to study

the interpretability of word embedding dimensions at a more

granular level.

The work much akin to ours is a recent study done by

[10]. In this study, the authors proposed to rotate the original

vector dimensions in such a way that the rotated vectors

are interpretable. While close in spirit, we differ from this

study in two aspects. Firstly, the objectives are different. We

aim to study the interpretability of words embedding in the

medical domain by leveraging upon the categorical knowledge.

Secondly, our problem is more difficult in a sense that the we

aim to particularly illuminate the implicit conceptual notion

remaining hidden within these individual dimensions.

III. OVERVIEW OF PROPOSED MODEL

Recall that the input to our system is a set of pre-trained

word vectors of medical concepts, and the goal is to learn a

transformation matrix that projects the input embeddings to

a new space wherein the transformed embeddings are both

interpretable and retain their original expressive features.

To accomplish our first objective (interpretability), we focus

on exploring the principles of category theory [15] and aim

to interpret the embeddings in terms of these categories. Such

categories in the biomedical domain refer to a broad subject

themes that provide a consistent categorization of the medical

concepts [16]. These categories in addition to possessing a

conceptual meaning also have dictionary definitions associated

with them. By taking advantage of this expert knowledge,

we infer their categorical representations. These inferred cat-

egorical representations then further act as the basis for our

new space. Once this new space is defined, we then learn a

transformation matrix from the original embedding space to

this new target space. This transformation matrix in particular

allows us to achieve interpretability for the input embeddings

in the transformed space.

Next, to achieve our second objective (i.e., retaining the

expressive features present in the pre-trained vectors), a form
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of orthogonal constraint is imposed on the learned transfor-

mation. Such form of imposition allows us to minimize the

possible loss of information; thereby, aiding us to achieve

our second objective of retaining the expressive information

present in the pre-trained vectors. Further details on these are

provided in Section IV-A and Section IV-B.

Last but not the least, we wish to highlight that one crucial

advantage of adopting this transformation based technique is

that it provides the proposed model an added flexibility of

acting as a “plug-and-play” module for other downstream

tasks. Because the proposed approach does not jeopardize

the word embedding training process, it allows end-users the

liberty of choosing their own method of generating word

embeddings and then utilize the proposed model as a means

of post-processing step to gain interpretability.

IV. METHODOLOGY

Our methodology section is divided into two sections.

Section IV-A describes the technique to infer the categorical

representations. Then, Section IV-B presents the details on

how the transformation matrix is learned, and further discusses

on how it induces the interpretability for word embeddings.

A. Inferring Categorical Embeddings

To infer the embeddings of categories, we leverage upon

the dictionary definitions provided by the subject matter

experts [16]. As an illustration, consider the definition of

category “Disease or Syndrome” shown below:

Disease or Syndrome: “A condition which alters or inter-
feres with a normal process, state, or activity of an organism.
It is usually characterized by the abnormal functioning of one
or more of the host’s systems, parts, or organs. Included here is
a complex of symptoms descriptive of a disorder. Any specific
disease or syndrome that is modified by such modifiers as
acute, prolonged, etc. will also be assigned to this type. If an
anatomic abnormality has a pathologic manifestation, then it
will be given this type as well as a type from the Anatomical
Abnormality hierarchy, e.g., Diabetic Cataract”.

As these definitions are very precise, we leverage this expert

knowledge and aim to infer the representation of “Disease or

Syndrome”. To do so, we first extract the medical concepts

from their definitions and then use their already available word

representations to infer their categorical meaning. Note that

these medical concepts (underlined in the above example def-

inition) are also present in our input pre-trained embeddings.

Now, as the number of concepts contained in these categor-

ical definitions is limited, this inevitably leads to a coarser

estimation of their categorical meaning. To overcome this

issue, we expand the set of associated medical concepts based

on the external knowledge graph present in the bio-medical

domain (the effectiveness of incorporating the neighbourhood

set is validated in the experimental section). In this knowledge

graph, the medical concepts are arranged in the form of a

hierarchical tree (i.e., IS-A relationships). As such, the distance

between the concepts in this tree denotes their semantic

proximity. Building upon this premise, we assume that the

concepts closer to each other in the hierarchy share greater

information and thus the subtle cues obtained from the local

neighborhood of concepts present in dictionary definitions

might improve the overall categorical representation.

Formally, let C ∈ R
d×m denote the overall collection of

categorical embeddings, d denote the embedding dimension

and m denote the number of semantic categories. Now, to

incorporate the above discussed local neighborhood infor-

mation for concepts present in the dictionary definitions, a

simple graph based scenario is considered. In this graph,

nodes refer to the set of medical concepts and an edge is

formed between concepts, if there is an hypernyms/hyponyms

relationship between them. Let Vi = {vi1, ..,vij} denote the

set of embedding vectors for medical concepts contained in the

definition of i-th categorical concept, and Neigh(vij) denote

the corresponding set of local neighbours (siblings, parents

and children) for the medical concept vij .

Our objective now is to infer the set of categorical embed-

dings Ĉ = [ĉi, ..., ĉm] such that the categorical vectors are

both close to the concepts present in their dictionary definitions

and also to the local neighbours of the dictionary concepts. To

achieve this, we propose the following loss function to infer

their categorical representations:

Lc =

m∑
i=1

[
J∑

j=1

(||ĉi − vij ||22 +
∑

k∈Neigh(vij)

α||ĉi − vijk||22)
]

(1)

where J denotes the number of dictionary concepts present in

the particular category definition, and vij , vijk represents the

embeddings of dictionary concepts. The value of α is empir-

ically set to 0.1 and is used to control the relative strengths

between the concepts explicitly present in the dictionary defi-

nitions and their local neighbours. As it can be observed, the

formulation is convex and its solution can be found by solving

a system of linear equations. We minimize the categorical loss

function and infer the categorical embeddings as follows:

Ĉ = argmin
Ĉ

Lc (2)

The entire set of categorical embeddings is denoted as

Ĉ = [ĉ1, ..., ĉm], and the closed form solution for ĉi is shown

below:

ĉi =

J∑
j=1

(vij + α
∑

k∈Neigh(vij)

vijk)

J + α
J∑

j=1

Kij

(3)

where Kij represents the size of Neigh(vij).

B. Learning Transformation

To be precise, we expect our transformation technique to

meet the following two objective: 1) the implicit conceptual
property within the individual dimensions should be enlight-
ened and 2) the transformation should be carried out in such
a way that the resultant embeddings retain the information
present in the original vectors. To accomplish the first goal,

the idea is to attain a target space (after performing transfor-

mation) with the basis as the semantics of inferred categorical
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representations (refer Section IV-A). The corresponding value

on individual dimension quantifies the amount of conceptual

property being captured within these individual dimensions.

Let T : Rd → Rm represent a linear transformation, and

the transformed categorical embeddings are represented as

T (Ĉ) = [T (ĉ1), ..., T (ĉm)]. Since the transformed categorical

embeddings act as a basis of the new space and these basis

are also linearly independent unit vectors in the new space, an

identity matrix could be used as a target for the transformed

basis. To achieve this, we formulate the transformation as an

optimization problem shown below:

min
W
||WT · Ĉ− I||22 (4)

Here the transformation matrix is denoted as W and I
refers to an identity matrix. Note that this step acts as a soft

regularization for linear independence, as in the real-word sce-

nario, the distinct categorical embeddings may not be strictly

independent of each other. In essence, this particular step of

categorical basis conversion plays a vital role in inducing the

interpretability in word vectors, and also allows us to explicitly

define the meaning of the individual dimensions with their

categorical types; thereby, enabling us to achieve our objective

of performing dimension-wise interpretability.

Next, to meet our second objective of preserving the ex-

pressive features, we propose to regularize the transformation

matrix by an orthogonal constraint. This is because of the

peculiar property of orthogonal transformation to preserve the

bilinear form i.e., Euclidean distance and Cosine in the latent

space [10]. Since our transformation is from the original em-

bedding space to an interpretable space, this may result in the

change in number of dimensions; thereby, causing a possible

information loss. To handle this, we adopt the principles of

orthogonal transformation and mould that into our proposed

optimization framework. This allows us to preserve the infor-

mation particularly relevant to the categorical dimensions. The

proposed orthogonal constraint is shown below:

min
W
||WT ·W − I||22 (5)

Now, since the focus of this study is to find a transformation

matrix W ∈ Rd×m that transforms the original pre-trained

embeddings from d dimensional space to m dimensional space

(that has inferred categorical embeddings as the basis), and the

corresponding transformation matrix also attempts to preserve

the information, the final objective to be minimized becomes

the combination of these two objectives:

Lw = ||WT · Ĉ− I||22 + β||WT ·W − I||22 (6)

Here β (empirically set to 0.2) controls the relative strengths

of associations. To solve this, we take the gradient of our

objective function (Equation 6) with respect to each of the

model parameters and then adopt stochastic gradient descent

to update our transformation matrix W :

W ← W − η
∂Lw

∂W
(7)

where η (empirically set to 0.001) is the learning rate for

gradient descent. Overall, the fulfillment of two above dis-

cussed objectives allows us to achieve our goal of inducing

the interpretability in vector representation and concurrently

retain the original expressive features.

V. EXPERIMENTS

The focus of this section is to demonstrate the efficacy of

the proposed model in improving the interpretability of the

pre-trained word embeddings. In doing so, we first need a

set of word embeddings trained on a massive corpora. For

this purpose, we choose MEDLINE1 - the largest available

bibliographic repository in the domain of biomedicine. At this

time of writing, it contains more than 24 millions records

(articles) primarily from the research area of life sciences

and biomedicine. Every article in MEDLINE is tagged with a

set of special keywords known as Medical Subject Headings

(MeSH) terms. Because they are assigned by subject-matter-

experts, they find their utility in a variety of biomedical

tasks. Thus, we believe that the use of MeSH terms (and

correspondingly release of interpretable MeSH embeddings2)

will have immediate practical benefits to the community.

Based on the full-scale MEDLINE corpus (and correspond-

ingly MeSH terms), we use CBOW [17] word embedding

model to train our embeddings. Additionally, as means of

an alternate baseline, we also train another prominent word

embedding model, namely, GloVe [11] on the same MEDLINE

corpora. As suggested by the previous studies [2], [11], the

number of embedding dimension is set to 300. Also, note the

total number of semantic types (m) available is 133 [16].

A. Interpretability

(1) Qualitative Assessment of Interpretability
To perform the qualitative assessment of our results, we

borrow experimental settings from the interpretable word

embeddings literature [8], [10]. Specifically, the idea in qual-

itative evaluation is that if a particular vector dimension is

interpretable then the top ranking words (from the entire

vocabulary) for that dimension should display a form of

semantic coherence. To examine this, we select four examples

of biomedical significance [6], [7]. The selected examples are

the following: a) Diabetes mellitus, b) Migraine disorders,

c) Alzheimer’s disease and d) Insulin. For each of these

examples, we examine their top participating dimension and

then look up for the top words with highest value in the same

dimension. Table I presents the results for both pre-trained

word embedding models (both CBOW and Glove) and the

proposed model. As it can be observed, the semantic grouping

of words resulted by CBOW/Glove is more or less arbitrary. In

contrast, the results obtained by our transformed embeddings

yields a meaningful semantic coherence. As an illustration

consider the case of “Diabetes mellitus”. For the proposed

model, it can be observed (refer Table I) that most of the terms

1https://www.nlm.nih.gov/pubs/factsheets/medline.html
2https://github.com/kishlayjha/InterpretableMedicalEmbeddings
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TABLE I: Qualitative evaluation of the original and generated embeddings

Concepts CBOW Glove Proposed
Diabetes mellitus 25-hydroxyvitamin d 2, 3-hydroxyacyl

coa dehydrogenases, whiplash injuries,
youth sports, abdominal fat

humans, xanthomatosis, cerebrotendi-
nous, glycogen, yang deficiency

diabetes insipidus, diabetes complica-
tions, diet therapy, digestive system dis-
eases

Indomethacin acute kidney injury, acute disease, “ad-
ministration, oral”, “abortion, septic”,
acidosis

acetohexamide, “administration, intra-
venous”, agglutination, albumins, “4-
aminobenzoic acid”

endothelin-1, endothelins, endothelin-
1, endotoxemia, “endothelin-converting
enzymes”

Alzheimer Disease ac133 antigen, acinar cells, ablation
techniques, abducens nerve diseases,
acinar cells

“active transport, cell nucleus”, “acid
sensing ion channels”, “abducens nerve
diseases”, “acinar cells”, “actins”

amyotrophic lateral sclerosis, amyloi-
dosis, “amyloidosis, familial”, amyloid
neuropathies, “amyloid neuropathies,
familial”

Insulin alpha-msh, artemia, anabolic agents,
antithyroid agents, appetite

appetite, acromegaly, adrenalectomy,
anabolic agents, andropause

insulin antagonists, insulin-like growth
factor binding protein 1, insulin-like
growth factor binding protein 2, lacta-
tion, lactation disorders

in the group are closely related to the various aspects of “Dia-

betes” itself and the remaining few are related to the concept of

“Disease” in general. In our transformed embeddings, we find

the category name of these terms to be “Disease or Syndrome”.

Recall that as our transformation matrix is augmented with the

categorical information, every dimension in the transformed

vector is regularized by a particular categorical concept.

Another point we wish to highlight is the ability of the

proposed model to answer question like: “To what extent

a medical concept (e.g., Insulin) encodes the semantics of

category Pharmacological substance or a Hormone within

their dense dimensions”. Note that the transformed embed-

dings have numerical values in their individual dimensions.

These numerical values precisely help us in answering such

aforementioned kind of questions. As an illustration, consider

the case of “Insulin”. In the medical domain, “Insulin” acts

both as a pharmacological substance and a hormone. In our

results, we obtained highest score for insulin in the category

name - “pharmacological substance” and a relatively higher

score in the category name - “hormone”. From this result,

one can speculate that the vector representations (generated by

the state-of-the-art embedding models) of insulin captures the

conceptual property of being a “pharmacological substance”

more than that of a “hormone”.

In essence, from the above discussed qualitative assessment

it can be deduced that the proposed model is able to elu-

cidate the meaning of individual dimensions and potentially

shed insights into the notion of conceptual properties being

captured by the state-of-the-art embedding models too. While

informative, this form of qualitative assessment still does not

inform us about the overall quality of the result set. To this

end, a quantitative evaluation has to be performed.

(2) Quantitative Assessment of Interpretable Embeddings
In order to perform a quantitative assessment, we analyze

our results on a task much akin to semantic categorization.

In more detail, every medical concept present in our vocab-

ulary belongs to a certain number semantic categories. For

instance, the medical concept “Diabetes mellitus” belongs

to the semantic category of “Disease or syndrome”. In this

manner, every concept present in the dictionary is assigned

a semantic category from the range of one to five. We probe

TABLE II: Quantitative evaluation of semantic categorization task

Baseline Accuracy
(K=5)

Accuracy
(K=10)

Accuracy
(K=15)

Supervised 0.732 0.857 0.925
Proposed model (without
neighbours)

0.423 0.557 0.652

Proposed Model 0.522 0.683 0.762

whether the dimension with highest score (i.e., semantic labels

predicted by proposed model) match the true semantic labels

or not. Table II reports the accuracy for our Top-K dimensions.

Now, as the previous studies do not perform dimension-wise

interpretability, a direct comparison with their approach cannot

be performed. For the sake of comparison, we developed a

baseline (i.e., Supervised) that uses all the explicit semantic

labels to train a linear model (using pre-trained emebddings)

and reported the results in Table II. As it can be observed, the

proposed model (though unsupervised in nature) still maintains

a reasonable performance as compared to the supervised

model. Note that in our proposed model we do not use

any explicit semantic labels. Now, in order to explore the

effectiveness of incorporating the neighbour sets of medical

concepts from the knowledge graph (refer Section IV-A),

we evaluate the proposed model (with/without neighbourhood

set) and report results. As it can be observed, the proposed

technique of categorical inference significantly outperforms

the baseline. We believe this is due to the ability of the

proposed technique to obtain subtle cues from the informative

neighbours of the dictionary concepts that ultimately improves

the quality of categorical representation.

In summary, from Section V-A, we can conclude that the

proposed model has the capability to generate interpretable

embeddings that have high proximity to the human intuition.

While this accomplishes our core objective, we also aim to

ensure that the information present in original pre-trained word

vectors is retained in the transformed embeddings. To evaluate

this, in Section V-B, we report and analyze our results on the

biomedical concept similarity/relatedness tasks.

B. Expressive Performance

In this section, we inspect the expressive performance of our

transformed embeddings as compared to the original vectors.
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TABLE III: Absolute values of correlation of the five measures
relative to human judgments - MeSH-1

Measure Physician Expert
CBOW 0.8174 0.7632
GLoVe 0.8057 0.7541
Proposed model 0.8015 0.74328

TABLE IV: Absolute values of correlation of the five measures
relative to human judgments- MeSH-2

Measure Human expert
CBOW 0.7677
GLoVe 0.7586
Proposed model 0.7789

(1) Evaluation Datasets
To examine the ability of transformed embeddings to retain

original information, we choose biomedical concept similar-

ity/relatedness task. The evaluation sets (i.e., MeSH-1 and

MeSH-2) are borrowed from [18] and [19] respectively. Both

datasets consist of 30 and 36 concept pairs that were manually

rated by human experts indicating their semantic similarity.

(2) Results and Discussion
1) MeSH-1: Table III presents the Spearman (ρ) coefficient

values obtained after applying the proposed model on the first

dataset (MeSH-1). As it can be observed from the table, the

proposed model performs on par with both CBOW and GloVE

and achieves similar correlation as pre-trained embeddings

with both physician’s and experts judgments.

From the results, it can be inferred that the transformed

embeddings retain the features of original vectors. We believe

the reason for this lies in the orthogonality constraint imposed

on the learned transformation. Because such form of impo-

sition leverages the principles of orthogonal transformation

(the has unique capability of preserving the bilinear form),

the categorical related information loss is minimized.

2) MeSH-2: Table IV shows the correlation values obtained

for the Spearman (ρ) coefficient for MeSH-2 dataset. Note

that in this dataset, the proposed model obtains even higher

correlation value as compared to the state-of-the word embed-

ding models. Analyzing this result further, we believe that the

reason for this lies in the capability of the proposed model

to preserve the relevant information related to categorical

dimensions in the transformed space, and correspondingly

removing the unrelated information.

VI. CONCLUSION

In this study, we proposed a novel framework that in-

duces the interpretability of word embeddings in the medical

domain. Specifically, by leveraging upon the principles of

category theory and rich categorical knowledge present in

the biomedical domain, the model learns a transformation

matrix that induces the interpretability of word embedding

dimensions at a granular level. The transformation matrix in

particular is learned in a such a way that any pre-trained input

embeddings can be transformed to a new space where the

produced embeddings reveal the conceptual meaning hidden

within their individual dimensions and concurrently posses the

expressive features present in the original pre-trained vectors.
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