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Abstract—Diagnosis prediction aims to predict the future
health status of patients according to their historical visit records,
which is an important yet challenging task in healthcare infor-
matics. Existing diagnosis prediction approaches mainly employ
recurrent neural networks (RNNs) with attention mechanisms
to make predictions. However, these approaches ignore the
importance of code descriptions, i.e., the medical definitions of
diagnosis codes. We believe that taking diagnosis code descrip-
tions into account can help the state-of-the-art models not only
to learn meaningful code representations, but also to improve
the predictive performance. Thus, in this paper, we propose
a simple, but general diagnosis prediction framework, which
includes two basic components: diagnosis code embedding and
predictive model. To learn the interpretable code embeddings, we
apply convolutional neural networks (CNNs) to model medical
descriptions of diagnosis codes extracted from online medical
websites. The learned medical embedding matrix is used to
embed the input visits into vector representations, which are
fed into the predictive models. Any existing diagnosis prediction
approach (referred to as the base model) can be cast into the
proposed framework as the predictive model (called the enhanced
model). We conduct experiments on two real medical datasets:
the MIMIC-III dataset and the Heart Failure claim dataset.
Experimental results show that the enhanced diagnosis prediction
approaches significantly improve the prediction performance.

I. INTRODUCTION

Due to the immense accumulation of Electronic Healthcare
Records (EHR), it is possible to directly predict patients’ fu-
ture health status according to their historical visit records [1]–
[14]. Especially, diagnosis prediction, which aims to predict
the diagnosis information of patients in the following visits,
attracts considerable attention from both healthcare providers
and researchers. The key challenge of diagnosis prediction task
is how to design an accurate and robust predictive model to
handle the temporal, high dimensional and noisy EHR data.

Recently, recurrent neural networks (RNN) based diagnosis
prediction models [2], [7], [8] have been broadly applied
to tackle these challenges. RETAIN [8] uses two recurrent
neural networks with attention mechanisms to model the
reverse time ordered EHR sequences. Dipole [2] enhances
the prediction accuracy by employing a bidirectional recurrent
neural network (BRNN) with different attention mechanisms.
The aforementioned models typically require large amounts
of EHR training data to guarantee the predictive performance.
However, there always exist medical codes of rare diseases,
which infrequently appear in the EHR data. To overcome this
issue, GRAM [7] has been proposed, which learns medical

code representations by exploiting medical ontology infor-
mation and the graph-based attention mechanism. For the
rare medical codes, GRAM can alleviate the difficulties of
learning their embeddings by considering their ancestors’
embeddings to guarantee the predictive performance. However,
the performance of GRAM heavily depends on the choice
of medical ontology. Thus, without specific input constraints,
how to learn robust embeddings for medical codes is still the
major challenge for accurate diagnosis prediction.

To resolve this challenge, we consider the “nature” of
diagnosis codes, i.e., their medical descriptions. Actually, each
diagnosis code has a formal description, which can be easily
obtained from the Internet, such as Wikipedia or online med-
ical websites. For example, from ICD9Data.com, the descrip-
tion of diagnosis code “428.32” is “Chronic diastolic heart
failure”, and “Rheumatic heart failure (congestive)” is the
description of diagnosis code “398.91”. Without considering
the medical meanings of diagnosis codes, they are treated as
two independent diseases in the EHR dataset. However, they
both describe the same disease, i.e., “heart failure”. Thus,
we strongly believe that incorporating the descriptions of
diagnosis codes should help the predictive models to improve
the prediction accuracy.

The other benefit of incorporating diagnosis code descrip-
tions is that it enables us to design a general diagnosis predic-
tion framework. The input data of all the existing diagnosis
prediction approaches are the same, i.e., a sequence of time-
ordered visits, and each visit consists of some diagnosis codes.
Thus, all the existing approaches, including, but not limited to
RETAIN, Dipole and GRAM, can be extended to incorporate
the descriptions of diagnosis codes to further improve their
predictive performance.

In this paper, we propose a novel framework for diagnosis
prediction task. It should be noted that all of the state-of-
the-art diagnosis prediction approaches (referred to as base
models) can be cast into the proposed framework. These
base models enhanced by the proposed framework are thus
called enhanced models. Specifically, the proposed framework
consists of two components: diagnosis code embedding and
predictive model. The diagnosis code embedding component
aims to learn the medical representations of diagnosis codes
according to their descriptions. In particular, for each word in
the description, we obtain the pretrained vector representation
from fastText [15]. Then the concatenation of all the words



in each diagnosis code description is fed into a convolutional
neural network (CNN) to generate the medical embeddings.
Based on the learned medical embeddings of diagnosis codes,
the predictive model component makes prediction. It first
embeds the input visit information into a visit-level vector
representation with the code embeddings, and then feeds this
vector into the predictive model, which can be any existing
diagnosis prediction approach.

II. DIAGNOSIS PREDICTION WITH CODE DESCRIPTIONS

A. Notations

We denote all the unique diagnosis codes from the EHR data
as a code set C = {c1, c2, · · · , c|C|}, where |C| is the number
of diagnosis codes. Let |P| denote the number of patients in
the EHR data. For the p-th patient who has T visit records,
the visiting information of this patient can be represented by a
sequence of visits V(p) = {V (p)

1 , V
(p)
2 , · · · , V (p)

T }. Each visit
V

(p)
t consists of multiple diagnosis codes, i.e., V (p)

t ⊆ C,
which is denoted by a binary vector x(p)

t ∈ {0, 1}|C|. The i-th
element of x(p)

t is 1 if V (p)
t contains the diagnosis code ci. For

simplicity, we drop the superscript (p) when it is unambiguous.
Each diagnosis code ci has a formal medical description,

which can be obtained from Wikipedia1 or ICD9Data.com2.
We denote all the unique words which are used to describe
all the diagnosis codes as W = {w1, w2, · · · , w|W|}, and
c′i ⊆ W as the description of ci, where |W| is the number of
unique words. With the aforementioned notations, the inputs
of the proposed framework are the set of code descriptions
{c′1, c′2, · · · , c′|C|} and the set of time-ordered sequences of

patient visits {x(p)
1 ,x

(p)
2 , · · · ,x(p)

T−1}
|P|
p=1. For each timestep t,

we aim to predict the information of the (t+ 1)-th visit. Thus,
the outputs are {x(p)

2 ,x
(p)
3 , · · · ,x(p)

T }
|P|
p=1.

B. Preliminaries

In this subsection, we first introduce the commonly used
techniques for modeling patients’ visits, and then list all the
state-of-the-art diagnosis prediction approaches.
Fully Connected Layer
Deep learning based models are commonly used to model
patients’ visits. Among existing models, fully connected layer
(FC) is the simplest approach, which is defined as follows:

ht = Wcvt + bc, (1)

where vt ∈ Rd is the input data, d is the input dimensionality,
Wc ∈ R|C|×d and bc ∈ R|C| are the learnable parameters.
Recurrent Neural Networks
Recurrent Neural Networks (RNNs) have been shown to be
effective in modeling healthcare data [2], [7], [8], [12]. In
this paper, GRU is used to adaptively capture dependencies
among patient visit information. For simplicity, the GRU can
be represented by

ht = GRU(vt; Ω),

1https://en.wikipedia.org/wiki/List of ICD-9 codes
2http://www.icd9data.com/

where Ω denotes all the parameters of GRU.

Attention Mechanisms
Attention mechanisms aim to distinguish the importance
of different input data, and attention-based neural networks
have been successfully used in diagnosis prediction task,
including location-based attention [2], [8], general atten-
tion [2], concatenation-based attention [2], and graph-based
attention [7]. In the following, we introduce two commonly
used attention mechanisms: location-based and graph-based
attention.
• Location-based Attention. Location-based attention mech-

anism [2], [8] is to calculate the attention score for each visit,
which solely depends on the current hidden state hi ∈ Rg
(1 ≤ i ≤ t) as follows:

αi = W>
αhi + bα, (2)

where Wα ∈ Rg and bα ∈ R are the parameters to be
learned. According to Eq. (2), we can obtain an attention
weight vector α = [α1, α2, · · · , αt] for the t visits. Then the
softmax function is used to normalize α. Finally, we can obtain
the context vector ct according to the attention weight vector
α and the hidden states from h1 to ht as follows:

ct =

t∑
i=1

αihi. (3)

We can observe that the context vector ct is the weighted sum
of all the visit information from time 1 to t.
• Graph-based Attention. Graph-based attention [7] is pro-

posed to learn robust representations of diagnosis codes even
when the data volume is constrained, which explicitly employs
the parent-child relationship among diagnosis codes with the
given medical ontology to learn code embeddings.

Given a medical ontology G which is a directed acyclic
graph (DAG), each leaf node of G is a diagnosis code ci and
each non-leaf node belongs to the set Ĉ. Each leaf node has a
basic learnable embedding vector ei ∈ Rd (1 ≤ i ≤ |C|), while
e|C|+1, · · · , e|C|+|Ĉ| represent the basic embeddings of the
internal nodes c|C|+1, · · · , c|C|+|Ĉ|. Let A(i) be the node set
of ci and its ancestors, then the final embedding of diagnosis
code ci denoted by gi ∈ Rd can be obtained as follows:

gi =
∑
j∈A(i)

αijej ,
∑
j∈A(i)

αij = 1, (4)

where

αij =
exp(θ(ei, ej))∑

k∈A(i) exp(θ(ei, ek))
.

θ(·, ·) is a scalar value and defined as

θ(ei, ej) = u>a tanh(Wa

[
ei
ej

]
+ ba),

where ua ∈ Rl, Wa ∈ Rl×2d and ba ∈ Rl are parameters to
be learned. Finally, graph-based attention mechanism gener-
ates the medical code embeddings G = {g1,g2, · · · ,g|C|} ∈
Rd×|C|.



Base Models
Since the proposed framework is general, all the existing di-
agnosis prediction approaches can be cast into this framework
and treated as base models. Table I shows the summary of
all the state-of-the-art approaches with the aforementioned
techniques. The detailed implementation of these base models
is introduced in the following section.

TABLE I
BASE MODELS FOR DIAGNOSIS PREDICTION.

Base Model Visit Modeling Attention Mechanism

FC GRU Location Graph

MLP
√

RNN [2], [7], [8]
√

RNNa [2]
√ √

Dipole [2]
√ √

RETAIN [8]
√ √

GRAM [7]
√ √

C. The Proposed Framework

Different from graph-based attention mechanism which
specifies the relationships of diagnosis codes with the given
medical ontology, we aim to learn the diagnosis code embed-
dings directly from their medical descriptions. The main com-
ponents of the proposed diagnosis prediction framework are di-
agnosis code embedding and predictive model. Diagnosis code
embedding component is to learn the medical embeddings with
code descriptions, which can embed the visit information into
a vector representation. Predictive model component aims to
predict the future visit information according to the embedded
visit representations. Obviously, the proposed framework can
be trained end-to-end. Next, we provide the details of these
two components.
Diagnosis Code Embedding
To embed the description of each diagnosis code into a vector
representation, Convolutional Neural Networks (CNN) [16]
can be employed. The benefit of applying CNN is to utilize
layers with convolving filters to extract local features, which
has shown its superior ability for natural language processing
tasks, such as sentence modeling [17] and sentence classifica-
tion [18].

Figure 1 shows the variant of the CNN architecture to embed
each diagnosis code description c′i into a vector representation
ei. We first obtain the pre-trained embedding of each word
wj denoted as lj ∈ Rk from fastText [15], where k is
the dimensionality. The description c′i with length n (padded
where necessary) is represented as

l1:n = l1 ⊕ l2 ⊕ · · · ⊕ ln, (5)

where ⊕ is the concatenation operator. Let h denote the size of
a word window, and then li:i+h−1 represents the concatenation
of h words from li to li+h−1. A filter Wf ∈ Rh×k is applied
on the window of h words to produce a new feature fi ∈ R
with the ReLU activation function as follows:

fi = ReLU(Wf li:i+h−1 + bf ), (6)

n × k representation of 

diagnosis code description 

(428.43)

Convolutional layer with 

multiple filter widths and 

feature maps

Max-over-time 

pooling

Failure

Acute

On

Chronic

Combined
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And

Diastolic

Heart

Fig. 1. An Example of CNN Architecture for Diagnosis Code Embedding.
The word window sizes are 2 (red line) and 3 (blue line) respectively, i.e.,
q = 2. For each word window, there are 2 filters in the example, i.e., m = 2.
The dimensionality of this code embedding is 4, i.e., d = mq = 4.

where bf ∈ R is a bias term, and ReLU(f) = max(f, 0). This
filter is applied to each possible window of words in the whole
description {l1:h, l2:h+1, · · · , ln−h+1:n} to generate a feature
map f ∈ Rn−h+1 as follows:

f = [f1, f2, · · · , fn−h+1]. (7)

Next, max pooling technique [19] is used over the feature
map to obtain the most important feature, i.e., f̂ = max(f). In
this way, one filter produces one feature. To obtain multiple
features, we use m filters with varying window sizes. Here, we
use q to denote the number of different window sizes. All the
extracted features are concatenated to represent the embedding
of each diagnosis code ei ∈ Rd (d = mq). Finally, we can
obtain the diagnosis code embedding matrix E ∈ Rd×|C|,
where ei is the i-th column of E.

The advantage of the proposed CNN-based diagnosis code
embedding approach is that it easily makes the diagnosis codes
with similar meanings obtain similar vector representations.
Thus, for those diagnosis codes without sufficient training
EHR data, they still can learn reasonable vector representa-
tions, which further helps the model to improve the predictive
performance. In the following, we will introduce how to use
the produced medical embeddings for the diagnosis prediction
task.
Predictive Model
Based on the learned diagnosis code embedding matrix E, we
can predict patients’ future visit information with a predictive
model. Given a visit xt ∈ {0, 1}|C|, we first embed xt into a
vector representation vt ∈ Rd with E as follows:

vt = tanh(Ext + bv), (8)

where bv ∈ Rd is the bias vector to be learned. Then vt is
fed into the predictive model to predict the (t + 1)-th visit
information, i.e., ŷt. Next, we cast state-of-the-art diagnosis
prediction approaches into the proposed framework as the
predictive models.
• Enhanced MLP (MLP+). The simplest predictive model

is only using a Multilayer Perceptron (MLP) with two layers:
a fully-connected layer and a softmax layer, i.e.,

ŷt = softmax(ht), (9)



where ht is obtained from Eq. (1). This model works well
when both the number of diagnosis codes and patients’ visits
are small. However, MLP+ does not use historical visit
information for the prediction. To overcome the shortage of
MLP+, we employ Recurrent Neural Networks (RNN) to
handle more complicated scenarios.

• Enhanced RNN (RNN+). For RNN+, the visit embedding
vector vt is fed into a GRU, which produces a hidden state
ht ∈ Rg as follows:

ht = GRU(vt; Ω). (10)

Then the hidden state ht is fed through the softmax layer to
predict the (t+ 1)-th visit information as follows:

ŷt = softmax(Wcht + bc), (11)

where Wc ∈ R|C|×g and bc ∈ R|C|. Note that RNN+ only
uses the t-th hidden state to make the prediction, which does
not utilize the information of visits from time 1 to t − 1. To
consider all the information before the prediction, attention-
based models are proposed in the following.

• Enhanced Attention-based RNN (RNNa+). According to
Eq. (10), we can obtain all the hidden states h1,h2, · · · ,ht.
Then location-based attention mechanism is applied to obtain
the context vector ct with Eq. (3). Finally, the context vector
ct is fed into the softmax layer to make predictions as follows:

ŷt = softmax(Wcct + bc). (12)

• Enhanced Dipole (Dipole+). Actually, one drawback
of RNN is that prediction performance will drop when the
length of sequence is very large [20]. To overcome this draw-
back, Dipole [2], which uses bidirectional recurrent networks
(BRNN) with attention mechanisms, is proposed to improve
the prediction performance.

Given the visit embeddings from v1 to vt, a BRNN
can learn two sets of hidden states: forward hidden states−→
h 1, · · · ,

−→
h t and backward hidden states

←−
h 1, · · · ,

←−
h t. By

concatenating
−→
h t and

←−
h t, we can obtain the final hidden state

ht = [
−→
h t;
←−
h t]
> (ht ∈ R2g). Then location-based attention

mechanism is used to produce the context vector ct ∈ R2g

with Eq. (2) (Wα ∈ R2g). With the learned ct, Dipole+ can
predict the (t + 1)-th visit information with a softmax layer,
i.e., Eq. (12) with Wc ∈ R|C|×2g .

• Enhanced RETAIN (RETAIN+). RETAIN [8] is an inter-
pretable diagnosis prediction model, which uses two reverse
time-ordered GRUs and attention mechanisms to calculate the
contribution scores of all the appeared diagnosis codes before
the prediction.

The visit-level attention scores can be obtained using
Eq. (2). For the code-level attention scores, RETAIN employs
the following function:

βt = tanh(Wβht + bβ), (13)

where Wβ ∈ Rd×g and bβ ∈ Rd are parameters. Then the
context vector ct ∈ Rd is obtained as follows:

ct =

t∑
i=1

αiβi ◦ vi. (14)

With the generated context vector ct and Eq. (12) (Wc ∈ Rd),
RETAIN+ can predict the (t+ 1)-th patient’s health status.

• Enhanced GRAM (GRAM+). GRAM [7] is the state-
of-the-art approach to learn reasonable and robust representa-
tions of diagnosis codes with medical ontologies. To enhance
GRAM with the proposed framework, instead of randomly
assigning the basic embedding vectors e1, · · · , e|C|, we use
diagnosis code descriptions to learn those embeddings, i.e.,
E. Note that the non-leaf nodes are still randomly assigned
basic embeddings.

With the learned diagnosis code embedding matrix G as
described in Section II-B, we can obtain visit-level embedding
vt with Eq. (8) (i.e., replacing E to G). Using Eq. (10) and
Eq. (11), GRAM+ predicts the (t+ 1)-th visit information.

III. EXPERIMENTS

A. Real-World Datasets

Two medical claim datasets are used in our experiments to
validate the proposed framework, which are the MIMIC-III
dataset and the Heart Failure dataset.
• The MIMIC-III dataset, a publicly available EHR dataset,

consists of medical records of 7,499 intensive care unit (ICU)
patients over 11 years. For this dataset, we chose the patients
who made at least two visits.
• The Heart Failure dataset is an insurance claim dataset,

which has 4,925 patients and 341,865 visits from the year
2004 to 2015. The patient visits were grouped by week [2],
and we chose patients who made at least two visits. Table II
shows more details about the two datasets.

Diagnosis prediction task aims to predict the diagnosis
information of the next visit. In our experiments, we intend
to predict the diagnosis categories as [2], [7], instead of
predicting the real diagnosis codes. Predicting category in-
formation not only increases the training speed and predictive
performance, but also guarantees the sufficient granularity of
all the diagnoses. The nodes in the second hierarchy of the
ICD9 codes are used as the category labels 3. For example,
the category label of diagnosis code “428.43: Acute on chronic
combined systolic and diastolic heart failure” is “Diseases of
the circulatory system (390-459)”.

B. Experimental Setup

We first introduce the state-of-the-art diagnosis prediction
approaches as base models, then describe the measures to
evaluate the prediction results of all the approaches, and finally
present the details of our experiment implementation.

3Note that the hierarchy of CCS (https://www.hcup-
us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt) can also be used
as category labels [7]. These two kinds of grouping methods can obtain
similar predictive performance.



TABLE II
STATISTICS OF MIMIC-III AND HEART FAILURE DATASETS.

Dataset MIMIC-III Heart Failure

# of patients 7,499 4,925
# of visits 19,911 341,865
Avg. visits per patient 2.66 69.41
# of unique ICD9 codes 4,880 6,747
Avg. # of diagnosis codes per visit 13.06 3.92
Max # of diagnosis codes per visit 39 54
# of words in code descriptions 2,800 3,397
# of category codes 171 149
Avg. # of category codes per visit 10.16 3.33
Max # of category codes per visit 30 33

Base Models
In our experiments, we use the following six approaches as
base models: MLP, RNN, RNNa [2], Dipole [2], RETAIN [8],
and GRAM [7]. For all the base models, we all design the
corresponding enhanced approaches for comparison.

Evaluation Measures
To fairly evaluate the performance of all the diagnosis pre-
diction approaches, we validate the results with the measure
accuracy@k. Given a visit Vt which contains multiple category
labels, if the target label is in the top k guesses, then we get 1
and 0 otherwise. Thus, accuracy@k is defined by the number
of correct label predictions divided by the total number of
label predictions. The greater values, the better performance.
In the experiments, we vary k from 5 to 30.

Implementation Details
We extract the diagnosis code descriptions from
ICD9Data.com. All the approaches are implemented with
Theano 0.9.0 [21]. We randomly divide the datasets into the
training, validation and testing sets in a 0.75:0.10:0.15 ratio.
The validation set is used to determine the best values of
parameters in the 100 training iterations. For training models,
we use Adadelta [22] with a min-batch of 100 patients. The
regularization (l2 norm with the coefficient 0.001) is used for
all the approaches. In order to fairly compare the performance,
we set the same g = 128 (i.e., the dimensionality of hidden
states) for all the base models and the enhanced approaches
except MLP and MLP+. For the proposed approaches on
both datasets, the size of word embeddings is 300, the word
windows (h’s) are set as 2, 3 and 4, and thus q = 3. For
each word window, we use m = 100 filters. For all the base
models, we set d = 180 on the MIMIC-III dataset and 150
on the Heart Failure dataset. For GRAM, l is 100.

C. Results of Diagnosis Prediction

Table III lists the accuracy with different k’s. We can
observe that the enhanced diagnosis prediction approaches
improve the prediction performance on both the MIMIC-III
and Heart Failure datasets.
Performance Analysis for the MIMIC-III Dataset
On the MIMIC-III dataset, the overall performance of all the
enhanced diagnosis prediction approaches is better than that
of all the base models. Among all the proposed approaches,

RETAIN+ and MLP+ achieve higher accuracy. MLP+ does
not use recurrent neural networks and directly predicts the
future diagnosis information with the learned visit embedding
vt. RETAIN+ utilizes the context vector which learns from
visit-level and code-level attention scores, and the learned visit
embeddings to make the final predictions. However, all the
remaining proposed approaches use the hidden states outputted
from GRUs to predict the next visit information. From the
above analysis, we can conclude that directly adding visit
embeddings into the final prediction can improve the predictive
performance on the MIMIC-III dataset. This is reasonable
because the average length of visits is small on the MIMIC-
III dataset. The shorter visits may not help the RNN-based
models to learn correct hidden states, and thus those methods
can not achieve the highest accuracy.

This observation can also be found from the performance
of all the base models. Compared with the naive base model
MLP, the precision or accuracy of all the four RNN-based
approaches is lower, including RNN, RNNa, Dipole and
RETAIN. This again confirms that RNN-based models can-
not work well with short sequences. Among all the RNN-
based approaches, location-based attention models, RNNa
and Dipole, perform worse than RNN and RETAIN, which
shows that learning attention mechanisms needs abundant
EHR data. Compared with RNN, both the precision and
accuracy of RETAIN are still higher. This demonstrates that
directly using visit embedding in the final prediction may
achieve better performance for the datasets with shorter visit
sequences. GRAM can achieve comparable performance with
the naive base model MLP. It proves that employing external
information can compensate for the lack of training EHR data
in diagnosis prediction task.
Performance Analysis for the Heart Failure Dataset
On the Heart Failure dataset, the enhanced approaches still
perform better than the corresponding base models, especially
GRAM+ which achieves much higher accuracy than other
approaches. The reason is that GRAM+ not only uses medical
ontologies to learn robust diagnosis code embeddings, but also
employs code descriptions to further improve the performance,
which can be validated from the comparison between the
performance of GRAM and GRAM+.

Among all the approaches, the accuracy of RETAIN is the
lowest, which shows that directly using the visit-level embed-
dings in the final prediction may not work on the Heart Failure
dataset, which can also be observed from the performance of
MLP. However, taking code descriptions into consideration,
the performance enormously increases. When k = 5, the
accuracy of RETAIN improves 42%. The performance of MLP
is better than that of RETAIN, but it is still lower than other
RNN variants. This illustrates that with complicated EHR
datasets, simply using multilayer perceptrons cannot work
well. Though learning medical embeddings of diagnosis codes
improves the predictive performance, the accuracy of MLP+ is
still lower than that of most approaches. This directly validates
that applying recurrent neural networks to diagnosis prediction
task is reasonable.



TABLE III
RESULTS OF DIAGNOSIS PREDICTION TASK.

Dataset @k MLP MLP+ RNN RNN+ RNNa RNNa+ Dipole Dipole+ RETAIN RETAIN+ GRAM GRAM+

M
IM

IC
-I

II

5 0.3104 0.3181 0.2952 0.3193 0.2910 0.3162 0.2941 0.3155 0.3056 0.3198∗ 0.3072 0.3183
10 0.5040 0.5138 0.4796 0.5111 0.4693 0.5085 0.4767 0.5086 0.4980 0.5160∗ 0.5003 0.5138
15 0.6286 0.6352 0.6019 0.6335 0.5889 0.6290 0.5971 0.6325 0.6258 0.6360∗ 0.6267 0.6348
20 0.7114 0.7239∗ 0.6894 0.7198 0.6822 0.7144 0.6845 0.7168 0.7129 0.7202 0.7130 0.7196
25 0.7754 0.7852∗ 0.7545 0.7804 0.7491 0.7785 0.7501 0.7795 0.7735 0.7806 0.7728 0.7794
30 0.8214 0.8294∗ 0.8040 0.8279 0.7987 0.8269 0.7990 0.8280 0.8198 0.8286 0.8220 0.8283

H
ea

rt
Fa

ilu
re 5 0.4580 0.5132 0.5599 0.5960 0.5699 0.5882 0.5687 0.5868 0.4085 0.5808 0.6152 0.6227∗

10 0.6266 0.6412 0.6835 0.7169 0.6920 0.7109 0.6953 0.7105 0.5460 0.7042 0.7393 0.7455∗
15 0.7124 0.7254 0.7603 0.7876 0.7645 0.7845 0.7702 0.7841 0.6512 0.7765 0.8088 0.8130∗
20 0.7717 0.7827 0.8132 0.8355 0.8153 0.8334 0.8209 0.8307 0.7162 0.8261 0.8544 0.8580∗
25 0.8206 0.8283 0.8516 0.8698 0.8532 0.8673 0.8580 0.8655 0.7684 0.8622 0.8872 0.8902∗
30 0.8572 0.8635 0.8812 0.8958 0.8825 0.8943 0.8860 0.8923 0.8100 0.8899 0.9113 0.9134∗

∗ denotes the highest accuracy among all the approaches on the same k.

For the two location-based attention approaches, RNNa
and Dipole, the performance is better than that of RNN,
which demonstrates that attention mechanisms can help the
models to enhance the predictive ability. Comparison between
RNNa and Dipole confirms that when the length of visit
sequences is large, bidirectional recurrent neural networks can
remember more useful information and perform better than
one directional recurrent neural networks.

Based on all the above analysis, we can safely conclude that
learning diagnosis code embeddings with descriptions indeed
helps all the state-of-the-art diagnosis prediction approaches to
significantly improve the performance on different real world
datasets.

IV. CONCLUSIONS

In this paper, we propose a novel and effective diagnosis
prediction framework, which takes the medical meanings of
diagnosis codes into account when predicting patients’ future
visit information. Experimental results on two real world
medical datasets prove the effectiveness and robustness of the
proposed framework for diagnosis prediction task.
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