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Abstract—In the big data era, the information about the
same object collected from multiple sources is inevitably
conflicting. The task of identifying true information (i.e., the
truths) among conflicting data is referred to as truth discovery,
which incorporates the estimation of source reliability degrees
into the aggregation of multi-source data. However, in many
real-world applications, large-scale data are distributed across
multiple servers. Traditional truth discovery approaches cannot
handle this scenario due to the constraints of communication
overhead and privacy concern. Another limitation of most
existing work is that they ignore the differences among objects,
i.e., they treat all the objects equally. This limitation would
be exacerbated in distributed environments where significant
differences exist among the objects. To tackle the aforemen-
tioned issues, in this paper, we propose a novel distributed
truth discovery framework (DTD), which can effectively and
efficiently aggregate conflicting data stored across distributed
servers, with the differences among the objects as well as
the importance level of each server being considered. The
proposed framework consists of two steps: the local truth
computation step conducted by each local server and the
central truth estimation step taking place in the central server.
Specifically, we introduce the uncertainty values to model the
differences among objects, and propose a new uncertainty-
based truth discovery method (UbTD) for calculating the true
information of objects in each local server. The outputs of the
local truth computation step include the estimated local truths
and the variances of objects, which are the input information
of the central truth estimation step. To infer the final true
information in the central server, we propose a new algorithm
to aggregate the outputs of all the local servers with the quality
of different local servers taken into account. The proposed
distributed truth discovery framework can infer object truths
without delivering any raw data to the central server, and
thus can reduce communication overhead as well as preserve
data privacy. Experimental results on three real world datasets
show that the proposed DTD framework can efficiently estimate
object truths with accuracy guarantee, and the proposed UbTD
algorithm significantly outperforms the state-of-the-art batch
truth discovery approaches.

Keywords-Truth discovery; distributed system; uncertainty
estimation

I. INTRODUCTION

We are living in the era of big data, and there are usually

multiple sources where we can collect information about the

same object (e.g., the air quality of a city, the traffic condi-

tion of a road segment, or even a question to be answered).

Inevitably, conflicts exist among the information provided

by different sources. Thus, how to automatically obtain the

true information (i.e., the truths) of the objects from the con-

Figure 1: The Scenario of Distributed Truth Discovery.

flicting multi-source information is a challenging research

topic. To address this challenge, truth discovery techniques,

which take the estimation of source reliability into account,

have been proposed to infer the true information of objects

from multi-source data [1]–[15]. Although these approaches

are different, the same principle applies: If the information

is provided by a reliable source, then it is more likely to

be trustworthy; and if a source provides lots of trustworthy

information, the source is more likely to be reliable.

In this paper, we consider a new scenario of truth

discovery, namely, distributed truth discovery. In practice,

the information (referred to as claims) about the observed

objects provided by different sources are usually distributed

across a bunch of local servers, as shown in Figure 1. Due to

the concerns of communication overhead as well as privacy,

in many cases it is not allowed to upload all the raw data

stored in different local servers to the central sever.

Under this distributed setting, traditional truth discovery

methods cannot be directly applied since they usually require

all the information being gathered in a central server. To

address this challenge, a straghtforward strategy can be

adopted: We first separately run an existing truth discovery

approach on each local server, and then apply majority

voting or averaging on local estimated truths to obtain the

final estimated truths in the central server. Unfortunately,

this naive approach may not work well when the quality

of most local servers is low. Clearly, the truths estimated

by different servers would have different accuracy, due to

the difference in the quantity and quality of their data. To

achieve accurate estimation of the final truths, it is important
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to take the quality of local servers into consideration when

aggregating data across distributed servers.

As aforementioned, to obtain accurate local truths, we can

directly apply the state-of-the-art truth discovery approach

in each local server. However, a drawback of most existing

truth discovery approaches is that they do not distinguish the

differences among objects, in other words, they treat all the

objects equally. The object difference stems from two main

factors: (1) The inner factors, i.e., the characteristics of the

objects themselves, such as the difficulty level of questions.

(2) The outer factors, such as the number of claims on

each object and the quality of sources that make claims on

this object. In practice, the differences among objects are

unavoidable, especially in the distributed environments. They

may significantly influence the local truth estimation. Thus,

another challenge is how to properly model the difference

among objects during the local truth estimation process.

To tackle the above challenges, in this paper, we propose

a novel distributed truth discovery framework, named DTD,

which incorporates the estimation of the uncertainty of each

object’s claims. This model can automatically infer true

information of objects from distributed conflicting informa-

tion. The proposed DTD consists of two components:

• Local truth computation, i.e., estmiating the local truths

and variances of objects in each local server;

• Central truth estimation, i.e., inferring the final truths

in the central server with the outputs from all the local

servers.

In the local truth computation step, we propose an

uncertainty-based batch truth discovery approach (called

UbTD), which models the differences among objects as the

uncertainty values used for estimating the truths in local

servers. Specifically, we assume that the sample variances

can represent the uncertainty of objects and furthermore

provide theoretical proof for this assumption. Based on the

learned uncertainty values of the objects, for each source

in the local server, we select a subset of objects with low

uncertainty. These selected objects and their claims are

used to calculate the reliability degrees of sources. Finally,

for each server, the local estimated truths can be inferred

according to the learned reliability degrees of sources.

In the central truth estimation step, we propose a new

approach to infer the final truths of the objects, which

simultaneously considers the quality of local servers, and

the estimated truths as well as object variances uploaded by

the local servers. Experimental results on three real world

datasets show that the proposed DTD can efficiently and

effectively estimate the true information of the objects, and

the proposed UbTD significantly outperforms the state-of-

the-art batch truth discovery approaches.

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to propose

a novel distributed truth discovery framework, named

DTD, which can infer true information from noisy and

conflicting distributed data.

• The proposed DTD framework neither uploads the raw

data in local servers to the central server nor needs

communications among local severs, which not only

preserves data privacy but also reduces communication

overhead.

• We empirically show that the proposed DTD framework

can efficiently estimate object truths with accuracy

guarantee in distributed environments. Moreover, the

proposed UbTD outperforms existing truth discovery

approaches on three real world datasets.

II. PROBLEM SETTINGS

To clearly define our problem, we introduce some termi-

nologies and notations used in this paper. Since we aim to

learn the true information of objects, the definition of an

object is given as follows:

Definition 2.1: An object n ∈ N is an item of interest,

such as a question, the departure or arrival time of a flight

and the temperature of a city at a certain time, where N is

the set of objects.

Different from existing truth discovery problem, we focus

on inferring true information under the distributed envi-

ronment. We assume that there are L local servers and

only one central server. On each local server l, there are

sources claiming on the N objects. Note that sources are

exclusive among local servers. Then, we have the following

definitions.

Definition 2.2: A source sl ∈ Sl is a user or website on

the l-th local server that can provide information for objects,

where Sl is the set of sources on l.
Definition 2.3: A claim xsl

n is a piece of information

provided by the source sl about the given object n on the

l-th local sever.

In reality, the claims on the same object n contributed by

different sources Sl on each local sever may be conflicting,

which leads to a fact that the reliability of sources is

different. Moreover, the data quality of different servers (i.e.,

the weights of local servers) may be different. Thus, the goal

of this paper is to infer the true information (i.e., the truth)

for each object n, estimate the reliability degree of source

sl on the local sever l, and learn the quality of each local

server. Next, we give the definitions of the estimated truths,

reliability degrees of sources on each server, and the weights

of servers, which are the outputs of our problem.

Definition 2.4: The local estimated truth μ̂l
n is the esti-

mated value for the given object n in the local sever l. The

final estimated truth μ̂n is the estimated value of the object

n in the central server.

Definition 2.5: The reliability degree rsl of a source sl on

the l-th local server measures the overall quality of claims

provided by sl. A larger rsl means that the claims provided

by the source sl are more trustworthy.
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Definition 2.6: The weight of a local server wl measures

the overall data quality of the local server l. The greater wl,

the higher the data quality on the local sever l.

III. METHODOLOGY

In this section, we first introduce the proposed

uncertainty-based batch truth discovery approach (UbTD),

which runs on the local servers and outputs both the local

estimated truth and variance for each object. Based on the

estimated truths and variances collected from all the local

servers, we can estimate the true information of objects with

the proposed distributed truth estimation model DTD. In the

following subsections, we will introduce UbTD and DTD in

detail.

A. Uncertainty-based Truth Discovery Model

On each local server l ∈ L, we aim to estimate the true

information of each object and learn the reliability degree

for each source. To achieve this goal, a simple way is

that we directly apply existing truth discovery approaches.

However, a drawback of existing models is that they do

not consider the characteristics of objects, i.e, they treat all

the objects equally. For some objects, such as questions,

they have the different difficulty levels. Easy questions

can easily obtain consistent answers provided by sources,

but for hard questions, the answers may be multifarious.

Thus, it is important to model the characteristics of objects

(or the differences among objects) in the truth estimation

process. Here, we use uncertainty to model the objects’

characteristics or differences.

• Uncertainty. An object’s uncertainty, denoted by ul
n,

can be seen as how difficult or confident to infer the real

true information of the object from the claims provided by

sources on each local sever l. Note that even for the same

object n, on different local servers, the uncertainty ul
n may

be different. Intuitively, the uncertainty of an object is mainly

determined by the following two aspects: the difficulty of the

object (i.e., the inner factor) and the claims on this object

(i.e., the outer factor). On the one hand, if the object is

extremely hard, it is difficult to infer its correct information

for all the models. Thus, this object will be assigned a higher

uncertainty value. On the other hand, if there are only a few

sources providing claims on the object, then with insufficient

data, the estimated truths do not have higher trustworthiness.

It also can lead to a larger uncertainty value.

To mathematically define the uncertainty, we assume

that for each object n, it has an underlying continuous

distribution with mean μn and variance σ2
n. Here, we treat

the mean μn as the truth of n and the variance σ2
n as the

inner factor, i.e., the difficulty. For each local server l, μ̂l
n

is the estimated truth of the object n. Thus, the outer factor

can be modeled as the square error between the estimated

truth and the real true value, i.e., (μ̂l
n−μn)

2. To theoretically

model the uncertainty, we give the following theorem:

Theorem 3.1: The variance σ̂l2
n of claims provided by

sources on the l-th local server is equal to σ2
n+(μ̂l

n−μn)
2.

Proof: See Appendix A for a detailed proof.

Actually, we can use 1
|Sl

n|
∑

sl∈Sl
n
(xsl

n − μ̂l
n)

2 to estimate

σ̂l2
n , where Sl

n is the set of sources on the l-th server

providing claims for the object n, and |Sl
n| is the size of

Sl
n. Based on the variance σ̂l2

n , we can formally define the

uncertainty ul
n as follows:

ul
n = 1− exp(−σ̂l2

n ). (1)

From Theorem 3.1, we know that σ̂l2
n = σ2

n+(μ̂l
n−μn)

2. For

the uncertainty in Eq. (1), if the object n is extremely hard,

i.e σ2
n → ∞, or the estimated truth μ̂l

n is far from the real

truth μn, i.e (μ̂l
n−μn)

2 →∞, the uncertainty ul
n will be 1;

and if the object is very easy ,i.e σ2
n → 0, and the estimated

truth μ̂l
n is close to the real truth μn, i.e., (μ̂l

n − μn)
2 → 0,

then the uncertainty will be 0. Thus, the uncertainty is a real

value from 0 to 1.

• Uncertainty-based Truth Discovery on the Local
Server. Taking the uncertainty of each object into consider-

ation, we propose a novel uncertainty-based truth discovery

approach UbTD. Generally, to solve the truth discovery

framework, there are two steps: reliability degree estimation

and truth computation. Next, we provide these two steps in

detail.

Reliability Degree Estimation. Intuitively, sources Sl may

not have the same confidence when claiming on the same

object n. In order to correctly characterize the reliability of

each source, we need to remove the objects with high un-

certainty. Thus, we propose an uncertainty-based algorithm

to sample claims. Based on the sampled claims, we estimate

the reliability degree for each source.

Algorithm 1 shows the uncertainty-based sampling

method. For each source sl, we bootstrap a subset of objects

which are claimed by the source sl, based on objects’

uncertainty. Then, we can obtain a new sampled dataset for

calculating the source reliability.

Algorithm 1 Uncertainty-based Sampling Algorithm.

Input: Claims on local server l : {xsl
n }n∈N and uncertainty

value {ul
n}n∈N .

Output: Subset of Claims {x̃sl
n }n∈N

Bootstrap subset of claims {x̃sl
n }n∈N from {xsl

n }n∈N based
on uncertainty value {ul

n}n∈N
2: return {x̃sl

n }n∈N .

In the reliability degree estimation step, we need to fix the

truths {μ̂l
n}. According to the principle of truth discovery,

if the reliability degree of this source is high, then the

estimated truths may be close to the claims provided by

the source sl; Otherwise, the claims may be far from the

estimated truths. If the uncertainty of the object is large,

then the source may not provide correct claim. Based on
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these two principles, we formulate the following objective

function:

min
{rsl}

∑
sl∈Sl

r2slg(u
l
n, x̃

sl
n , μ̂l

n)

s.t.
∑
sl∈Sl

rsl = 1, rsl ≥ 0, ∀sl ∈ Sl,
(2)

where g(·) =
∑

n∈N (1−ul
n)(x̃

sl
n −μ̂l

n)
2

∑
n∈N (1−ul

n)
is the weighted error

function, which is related to the uncertainty of objects {ul
n},

the sampled claims {x̃sl
n }, and the estimated truths {μ̂l

n} on

the local server.

To solve the above objective function in Eq. (2), we can

adopt the method of Lagrange multipliers. The Lagrangian

of Eq. (2) is given as follows:

L =
∑
sl∈Sl

r2slg(u
l
n, x̃

sl
n , μ̂l

n) + λ(
∑
sl∈Sl

rsl − 1),

where λ is a Lagrange multiplier. Let the partial derivative

of Lagrangian L with respect to rsl be 0, and we can obtain

the reliability degree rsl of the source sl as follows:

rsl ∝
1

g(ul
n, x̃

sl
n , μ̂l

n)
. (3)

Truth Computation. The final goal of truth discovery

problem is to identify true information of objects from

conflicting claims provided by multiple sources. If the source

sl has a larger reliability degree rsl , then the estimated truth

μ̂l
n may be closer to the claim xsl

n provided the source

sl. Based on this intuition, a commonly used strategy to

calculate the truth is proposed as follows:

μ̂l
n =

∑
sl∈Sl

rslx
sl
n∑

sl∈Sl
rsl

. (4)

The estimated truth μ̂l
n can be seen as the weighted mean

of all the claims provided by sources on the object n. Note

that when calculating truths, we use the raw data not the

sampled data.

Algorithm 2 shows the flow of UbTD. It calculates the

uncertainty value for each object according to Eq. (1), then

bootstraps claims according to Algorithm 1 for each source,

and computes reliability degrees of sources on the sampled

claims. Finally, we obtain the estimated truths and variances

of objects.

B. Distributed Truth Discovery

In most real-world applications, data about the same

object may be stored or collected from a bunch of servers. In

order to infer true information of objects located on multiple

severs, we propose a novel truth discovery framework, called

DTD, to deal with the distributed data. From Section III-A,

for each local server l, we can obtain the estimated truths

{μ̂l
n} and the variances {σ̂l2

n } of objects. The benefits of

uploading these two values from local servers L to the cen-

tral sever are two folds: (1) This approach can significantly

Algorithm 2 Uncertainty-based Truth Discovery.

Input: Claims on local server l: {xsl
n }n∈N ,sl∈Sl .

Output: Reliability of sources {rsl}sl∈Sl , estimated truths
{μ̂l

n}n∈N and variances {σ̂l2
n }n∈N .

Initialize the estimated truths {μ̂l
n}n∈N ;

2: while Convergence criterion is not satisfied do
for n← 1 to N do

4: Compute uncertainty value ul
n according to Eq. (1);

end for
6: for sl ← 1 to Sl do

Bootstrap claims {x̃sl
n }n∈N according to Algorithm 1;

8: Compute reliability rsl according to Eq. (3);
end for

10: Compute estimated truths {μ̂l
n}n∈N according to Eq. (4);

end while
12: Compute variance {σ̂l2

n }n∈N ;
return {rsl}sl∈Sl , {μ̂l

n}n∈N and {σ̂l2
n }n∈N .

preserve data privacy. (2) They can characterize the data

density about the object n on the local sever l ∈ L, i.e.,

maintaining the original data properties on the local servers.

Let f l
n(·) represent the density function of the object n on the

local server l with mean μ̂l
n and variance σ̂l2

n . Based on this

density function, in the central sever, we can still calculate

the distance between the claims on the local server l and the

estimated final truth denoted as μ̂n of the object n, which

can be formulated as follows:

dln =

∫
(x− μ̂n)

2f l
n(x)dx.

Similar to the proof of Theorem 3.1 in Appendix A, we

can obtain the solution of dln = σ̂l2
n + (μ̂l

n − μ̂n)
2, which

illustrates that the distance is related to both the sample

variance and the estimated truth of the object n on the local

sever l.
Actually, for the same object, the quality of claims on

different local severs may be different because the sources

claiming on the objects have different reliability degrees. If

the data on the local server l are close to the estimated truth

μ̂n, then the local server may have high quality; otherwise,

the quality of this local server is low. Thus, we need to

assign a weight wl to the local sever l for characterizing

the overall quality of this server. To estimate the final true

information of objects on the central server, we need to

minimize the distances between the data on the local servers

and the estimated final truths. Based on the distances {dln}
and the weights {wl} of local severs, we have the following

objective function on the central server:

min
{wl},{μ̂n}

∑
n∈N

∑
l∈L

wld
l
n

s.t.
∑
l∈L

exp (−wl) = 1.
(5)

The intuitions behind this objective function are as fol-

lows: (1) The proposed objective function minimizes the

508



weighted distances between the claims on each local server

and the estimated true information (i.e, the truths). If the

local server l has a higher weight, then the estimated truth

μ̂n on the central server should be close to the uploaded

truth μ̂l
n from the local sever l in order to minimize the

distances. (2) If the claims located on the local server l are

close to the truth μ̂n, then quality of the local server l may

be high.

In the above objective function, i.e, Eq. (5), we have two

sets of variables: the weights of local servers {wl} and the

estimated truths {μ̂n} (in {dln}). To solve this optimization

problem, we adopt the commonly used block coordinate

descent approach [16], which leads to an iterative solution

consisting of the following two steps.

Local Server Weight Updates. In this step, we fix the

estimated truth {μ̂n}. We apply Lagrange multipliers to

solve this optimization problem as follows:

L′ =
∑
n∈N

∑
l∈L

wld
l
n + λ′

(∑
l∈L

exp (−wl)− 1
)
, (6)

where λ′ is a Lagrange multiplier. Let the partial derivative

of L′ with respect to wl be 0, and then we can obtain the

solution of wl as follows:

wl = − log
( ∑

n∈N (σ̂l2
n + (μ̂l

n − μ̂n)
2)∑

n∈N
∑

l∈L(σ̂l2
n + (μ̂l

n − μ̂n)2)

)
. (7)

Central Server Truth Updates. During this step, we fix

the weights of local servers {wl}. The estimated truth of

the object n can be easily obtained, which is the weighted

average of the uploaded estimated truth μ̂l
n from each local

server l, i.e.,

μ̂n =

∑
l∈L wlμ̂

l
n∑

l∈L wl
. (8)

Algorithm 3 shows the flow of the proposed DTD. The

inputs are the estimated truths and variances from local

servers. We first initialize the final estimated truths in the

central server, and then iteratively update them and server

weights until convergence.

Algorithm 3 Distributed Truth Discovery.

Input: Local estimated truths {μ̂l
n}n∈N ,l∈L and variances

{σ̂l2
n }n∈N ,l∈L.

Output: Estimated truths {μ̂n}n∈N and server weights {wl}l∈L .

Initialize the estimated truths {μ̂n}n∈N ;
2: while Convergence criterion is not satisfied do

Compute the server weights {wl}l∈L according to
Eq. (7);

4: for n← 1 to N do
Update the estimated truths μ̂n according to Eq. (8);

6: end for
end while

8: return {μ̂n}n∈N and {wl}l∈L.

IV. EXPERIMENTS

In this section, we first introduce the three real-world

datasets used in the experiments. Then, we introduce the

baselines and the evaluation metrics. Finally, we conduct

experiments on these datasets for validating the performance

of the proposed UbTD and DTD, respectively. The experi-

mental results show that the proposed UbTD outperforms the

state-of-the-art batch truth discovery approaches. Moreover,

we provide analysis on convergence of UbTD and validate

the assumption of UbTD. The experimental results of DTD
on the three datasets indicate that the proposed method is

better than baselines on both accuracy and efficiency.

A. The Real-World Datasets

In order to evaluate the performance of the proposed

methods, UbTD and DTD, we use three datasets in the

experiments: one categorical dataset and two continuous

datasets. In the following, we introduce these three datasets

in detail.

The categorical dataset is named the Game dataset [7],

[9], [17], which is collected from multiple online users who

play an Android App based on a TV show called “Who

Wants to Be a Millionaire”. For each question shown on the

app, there is only one correct answer provided by the TV

game show, and a difficulty level is predefined.

The continuous datasets we used include the Weather

dataset and the Flight dataset1. For the Weather dataset, high

temperature forecast information for 88 big US cities are

collected from HAM weather (HAM), Weather Underground

(Wunderground), and World Weather Online (WWO). Be-

sides the forecast information, real high temperature obser-

vations of each day are also collected as the ground truths for

evaluation purpose. The Flight dataset is to extract departure

and arrival information for 11,512 flights over 36 sources

during one-month starting from December 2011. All the time

information is translated into minutes. For example, “9:30

am” will be translated into 570 mins, and “9:30 pm” will

be translated into 1,290 mins. The ground truth information

is also available for evaluation. The statistics of these three

real-world datasets are shown in Table I.

Table I: The Statistics of the Real-World Datasets.

Game Weather Flight

# Sources 37,029 152 36
# Objects 2,103 7,568 138,586

# Observations 214,849 936,989 2,207,379

B. Baselines & Evaluation Measures

To fairly evaluate the performance of the proposed meth-

ods, we first describe the state-of-the-art truth discovery

1http://lunadong.com/fusionDataSets.htm
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approaches as baselines, and then introduce the evaluation

metrics.

Baseline Methods. In the experiments, we use both cate-

gorical and continuous datasets. For the continuous datasets,

the baseline methods include Median, Mean, CATD [7],

CRH [8], KDEm [18], ETCIBoot [17] and GTM [3]. For the

categorical dataset, we use the following baseline methods:

Voting, ETCIBoot [17], Accusim [4], 3-Estimates [6],

CRH [8], Investment [19], CATD [7], Zencrowd [2],

Dawid&Skene [1], and TruthFinder [5]. Details of these

methods are introduced in the related work section. We also

use a variant of the proposed UbTD as a baseline, called

UbTD−, which reduces the sampling step (Algorithm 1)

when calculating the reliability degrees of sources.

Performance Metrics. We applied the following metrics

to compare the aggregated results with the ground truths.

For the continuous data, we adopt both the mean absolute

error (MAE) and the root of mean squared error (RMSE),

and for the categorical data, we adopt the error rate as the

performance metric. More details are given as follows:

• MAE: MAE uses �1-norm distance between the aggre-

gated results and the ground truths. It penalizes more

on the smaller errors.

• RMSE: RMSE uses �2-norm distance between the es-

timated truths and the ground truths, which penalizes

more on the bigger errors.

• Error Rate: Error Rate is defined as the percentage of

mismatched values between the aggregated results and

the ground truths.

For all the above performance metrics, the lower values,

the better performance.

C. Experimental Results of UbTD

We first validate the performance of the proposed UbTD
on the categorical dataset, i.e., the Game dataset, and

then show the experimental results on the two continuous

datasets.

(1) Results on the Categorical Dataset
We analyze the performance of the proposed UbTD from

three aspects: the accuracy, convergence and model assump-

tion validation.

• Accuracy Analysis. For the Game dataset, each claim

is a discrete value. In order to fit the input of the proposed

UbTD, we follow the data preprocessing approach of [7],

[17], i.e., transferring the discrete claims into probability

vectors. Table II shows the error rate of all the methods

on the Game dataset. From Table II, we can observe that

the overall performance of the proposed UbTD is better

than of all the baseline approaches in terms of Error Rate.

Comparison between UbTD and UbTD− shows that it is

important to sample a subset based on the uncertainty to

calculate the reliability degrees of sources. For the baselines,

ETCIBoot achieves the best results. However, in all the ten

difficult levels, the proposed UbTD wins ETCIBoot on five

levels and draws with ETCIBoot on two levels. For other

baselines, the error rate of TruthFinder is larger than other

methods’ because this method is dramatically affected by the

large number of lower quality claims. There are many users

providing low quality answers and the number of conflicts

is very large on the Game dataset. Thus, it leads to the poor

performance of TruthFinder. The error rate of Investment
is greater than that of Voting, as Investment estimates the

probability of each claim being correct given each user’s

reliability without considering complement votes. Other

baseline methods are all better than Voting but worse than

UbTD.

• Convergence. Figure 2 shows the proposed UbTD can

converge to a small error rate. The X-axis represents the

number of iterations, and the Y-axis is the error rate. From

Figure 2, we can observe that the error rate of UbTD is

0.0590 after only the first iteration, which is better than the

performance of most baselines except ETCIBoot and CATD
as shown in Table II. With the increase of the number of

iterations, the error rate drops dramatically. After the fifth

iteration, the error rate of UbTD is smaller than that of

CATD. The performance of the proposed UbTD is better

than that of the best baseline ETCIBoot after the thirteenth

iteration. Finally, the overall error rate of UbTD steadily

converges.
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Figure 2: The Convergence on the Game Dataset.

• Model Validation. In the proposed model UbTD, we as-

sume that with the uncertainty of objects increases, the error

rate also raises. To validate this assumption, we conduct the

following experiment. For each object, we can obtain its

corresponding uncertainty value. Then, for each uncertainty

value, we round to the nearest tenths. Finally, we calculate

the average error rate of all the objects with the same

uncertainty value. Figure 3 shows the relationship between

uncertainty and error rate. From Figure 3, we can observe

that when the uncertainty value increases, the error rate

increases. This observation is in accord with our assumption.

On the Game dataset, each question or object has a

difficulty level. For difficult questions, users usually cannot

answer correctly, i.e., higher error rate. Thus, using difficulty

level information, we also can validate our assumption. We

first obtain the uncertainty values for questions. Then, for
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Table II: Performance Comparison on the Game Dataset.

Method
Error Rate

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Overall
(303) (295) (290) (276) (253) (218) (187) (138) (99) (44) (2103)

UbTD 0.0132 0.0305 0.0241 0.0145 0.0395 0.0550 0.0374 0.0725 0.1010 0.0909 0.0366
UbTD− 0.0132 0.0271 0.0276 0.0254 0.0474 0.0596 0.0374 0.1231 0.1111 0.2045 0.0456

ETCIBoot 0.0165 0.0271 0.0241 0.0217 0.0395 0.0505 0.0481 0.0870 0.0707 0.1364 0.0385
CATD 0.0132 0.0271 0.0276 0.0290 0.0435 0.0596 0.0481 0.1304 0.1414 0.2045 0.0485
CRH 0.0264 0.0271 0.0345 0.0435 0.0593 0.0872 0.0856 0.2609 0.3535 0.4545 0.0866

ZenCrowd 0.0330 0.0305 0.0345 0.0471 0.0593 0.0872 0.0856 0.2754 0.3636 0.5227 0.0899
AccuSim 0.0264 0.0305 0.0345 0.0507 0.0632 0.0963 0.0909 0.2826 0.3636 0.5000 0.0913

3-Estimates 0.0264 0.0305 0.0310 0.0507 0.0672 0.1055 0.0963 0.2971 0.3737 0.5000 0.0942
Dawid&Skene 0.0297 0.0305 0.0483 0.0507 0.0672 0.1101 0.0963 0.2971 0.3636 0.5227 0.0975

Voting 0.0297 0.0305 0.0414 0.0507 0.0672 0.1101 0.1016 0.3043 0.3737 0.5227 0.0980
Investment 0.0330 0.0407 0.0586 0.0761 0.0870 0.1239 0.1283 0.3406 0.3838 0.5455 0.1151
TruthFinder 0.0693 0.0915 0.1241 0.0942 0.1581 0.2294 0.2674 0.3913 0.5455 0.5455 0.1816
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Figure 3: Error Rate w.r.t. Uncertainty on the Game Dataset.

the questions with the same difficulty level, we calculate

the average uncertainty values of them. Figure 4 shows the

validation results. We can observe that with the difficulty

level increases, the average uncertainty raises. It can also

validate the initial assumption.
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Figure 4: Uncertainty w.r.t. Difficulty Level on the Game Dataset.

(2) Results on the Continuous Datasets
We use two continuous datasets (the Weather and Flight

dataset) to validate the performance of UbTD.

• Accuracy Analysis. Table III shows the performance

of the proposed UbTD and baselines. On the Weather

dataset, the UbTD method achieves the best performance

on both MAE and RMSE compared with baseline methods.

Since the proposed UbTD incorporates the uncertainty of

objects, it makes the proposed approach learn correct source

reliability degrees, and in turn, estimate the accurate true

information. Compared with the best baseline ETCIBoot,
the proposed UbTD reduces MAE and RMSE 16.85% and

16.88%, respectively.

Table III: Performance Comparison on the Continuous Datasets.

Method
Weather Flight

MAE RMSE MAE RMSE

UbTD 3.6725 4.7573 4.7149 58.4209
UbTD− 3.6731 4.7583 4.7355 58.5230
Mean 4.7523 6.1378 8.2100 51.5379

Median 4.5791 5.9982 7.6030 58.0486
KDEm 4.4283 5.9153 11.0362 69.9530
GTM 4.4409 5.7567 7.9760 51.7872

ETCIBoot 4.4169 5.7237 8.9288 55.4703
CATD 4.6375 6.0453 6.7832 60.7814
CRH 4.5139 5.9088 7.7923 58.2416

On the Flight dataset, the proposed UbTD obtains the

best performance on MAE. For the metric RMSE, the

performance of the naive baseline Mean is the best. That

is because the Flight dataset contains some special objects,

arrival or departure time at “0:00 am” or “0:00 pm”. They

are easily mixed, and the difference is around 720 minutes.

Since most reliable sources also mistake these two values,

it is hard to infer the correct value of this object for all the

approaches. To fairly evaluate the performance for all the

methods, we adopt another commonly used approach [12],

[17] , Tolerance(ε), which needs to convert the continuous

data to categorical data. Tolerance(ε) means that the esti-

mated answer within an ε-minute difference of the ground

truth can be seen as the correct one. Table IV shows the

error rate with different ε’s on the Flight dataset.

Table IV: Error Rate on the Flight Dataset.

Method ε = 1 ε = 5 ε = 10

UbTD 0.0714 0.0267 0.0159
UbTD− 0.0731 0.0267 0.0160
Mean 0.5880 0.2802 0.1165

Median 0.2840 0.2279 0.1541
GTM 0.4054 0.2665 0.1749

KDEm 0.3544 0.2994 0.2482
ETCIBoot 0.4403 0.2751 0.1565

CATD 0.1582 0.1405 0.1175
CRH 0.2846 0.2318 0.1649
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From Table IV, we can see that the proposed UbTD
decreases the error rate significantly on all ε’s compared with

baseline methods. When ε = 1 min, UbTD can correctly

estimate more than 90% of the flight arrival or departure

time. With 10 minutes tolerance, UbTD can decrease to

1.59% error rate on all the objects, which reduces more than

86% of errors compared with best baseline method Mean.

This big improvement shows the importance of incorporating

uncertainty into truth discovery.

• Convergence. To show the convergence of UbTD on the

continuous data, we take the Flight dataset as an example

shown in Figure 5. The X-axis denotes the number of

iterations, and the Y-axis is the MAE value. We can observe

that the UbTD converges within four iterations. The MAE

reduces significantly in the first three iterations. It is because

the proposed UbTD can learn accurate source reliability

degrees within a small number of iterations, which helps

UbTD to estimate correct answers.
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Figure 5: The Convergence on the Flight Dataset.

• Assumption Validation. Similar to the validation on

the categorical dataset, we validate our assumption on the

continuous dataset. Here, we use the Flight dataset as an

example, and the Weather dataset has the similar property.

We first obtain the uncertainty levels or groups by rounding

up the uncertainty for each object, and then calculate the

average MAE of objects in the same group. Figure 6 shows

the relationship between uncertainty and MAE value on the

Flight dataset. The X-axis is the uncertainty, and the Y-axis

denotes the MAE. In Figure 6, there is one special point

whose coordinate is (1.0, 13.8705). As we analyze in the

Accuracy Analysis, the objects “0:00 am” and “0:00 pm” are

mixed, and their uncertainty values are all 1.0. In order to

clearly show the trends of other uncertainty levels, we do not

show this point in Figure 6. From Figure 6, we can observe

that the uncertainty and MAE are highly related. With the

increase of the uncertainty level, the MAE increases, which

satisfies our assumption.

D. Experimental Results of DTD

In Section IV-C, we have shown that the proposed

UbTD outperforms all the state-of-the-art truth discovery

approaches in a central server. In this subsection, we aim

to validate the performance of the proposed approach DTD
under the distributed environment. We first introduce the
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Figure 6: MAE w.r.t. Uncertainty on the Flight Dataset.

experiment settings, and then validate the performance on

both categorical on continuous datasets with accuracy and

efficiency.

• Experiment Setups. To deploy the distributed environ-

ment, we use L > 1 local servers and one central sever. On

each local server l, we run the proposed UbTD with a subset

of data2. Then, each local server only uploads its estimated

truth set and variance of each object to the central server.

Finally, the central server infers the final estimated truths for

objects based on inputs from local servers. Note that there

is no communications among local servers. We run DTD 10

times from the data partition to the truth estimation. Then

we report the average results in the following experiments.

To validate the performance of the proposed DTD, we

select three representative approaches as the baselines: the

first two are CRH and CATD, and the last one is the

proposed UbTD. For each baseline, we first run it on the

local server, and then estimate the true information by simply

averaging or voting.

• Accuracy Analysis on the Categorical Dataset. Table V

lists the error rate with different L’s on the Game dataset.

We can observe that the proposed DTD can achieve the

best performance compared with all the baselines. UbTDv

means that we first run UbTD on each local server and

then estimate the truths by voting all the outputs of local

servers. Compared with UbTDv , the performance of DTD
improves significantly. It is because after partitioning the

whole data into L groups by sources, there may be a few

groups containing high quality sources, which leads to a

fact that the truth estimated by different local servers may

have different quality. The proposed DTD which models

the quality of outputs from local servers can achieve better

performance compared with UbTDv . Compared with the

other two baselines CRHv and CATDv , UbTDv has lower

error rates on different L’s. This also illustrates that the

proposed UbTD is better than the existing state-of-the-art

batch truth discovery approaches. We use Figure 7 to clearly

show the relationship between the number of local servers

and the error rate. From Figure 7, we can observe that with

the increase of the value of L, the error rate also increases. It

2For each dataset, we randomly partition all the sources into L groups.
All the claims provided by sources in group L are the input data of the
l-th local server.

512



is reasonable because the larger L means that less data on the

local servers. With insufficient data, the algorithms cannot

correctly estimate the truths. Thus, the error rate increases.

Table V: Error Rate with Different L’s on the Game Dataset.

Method L = 5 L = 10 L = 15 L = 20

DTD 0.0565 0.0615 0.0651 0.0658
UbTDv 0.0666 0.0713 0.0752 0.0757
CRHv 0.0897 0.0894 0.0904 0.0933
CATDv 0.0755 0.0795 0.0817 0.0837
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Figure 7: Error Rate w.r.t. Different L’s on the Game Dataset.

Table VI: MAE with Different L’s on the Continuous Datasets.

Dataset L Method
DTD UbTDa CRHa CATDa

Weather

5 3.8108 3.8373 5.1667 4.2323
10 4.0456 4.1117 6.5400 4.3735
15 4.1795 4.2530 6.9867 4.4846
20 4.2926 4.3735 7.1271 4.5326

Flight

4 6.1313 7.2108 56.5856 28.9426
6 6.4824 7.6193 55.6556 35.2040
8 6.5700 8.0353 77.6273 39.4831
10 6.8645 7.8709 116.1163 33.4058
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Figure 8: RMSE w.r.t. Different L’s on the Weather Dataset.

• Accuracy Analysis on the Continuous Datasets. Ta-

ble VI shows the MAE values of all the methods with

different L’s on the Weather and Flight datasets. For all

the baselines, we first run the algorithm and then average
all the outputs from local severs as the final truths. Since

the number of sources on the Flight dataset is only 36, we

set L as 4, 6, 8 and 10. From Table VI, we can see that the

proposed distributed truth discovery method DTD achieves

the best performance compared with baseline methods on the

two continuous datasets. Even in the distributed scenario, the

MAE values of the proposed DTD are smaller than those of

most state-of-the-art batch methods as shown in Table III.

The performance of all the approaches slightly decreases as

the number of local servers increases, because local servers

own less sources, and it is hard to infer true information

with insufficient data. Compared with UbTDa
3, we can see

that the combination algorithm helps to improve the local

truth discovery model further, and DTD can provide more

stable results on the different number of servers.
Figure 8 shows the relationship between L and RMSE on

the Weather dataset. Similar with the Error Rate on the Game

dataset or MAE shown in Table VI, the RMSE increases with

the increase of L.

• Efficiency Evaluation. From the results of accuracy

analysis in Table V and VI on both categorical and contin-

uous datasets, we can safely conclude that even the number

of servers is big, DTD still obtains high accuracy. In this

section, we use running time to evaluate the efficiency of

the proposed DTD. The running time of the proposed DTD
includes two parts: the one denoted as tl is to run UbTD
on each local server l, and the other one tc is for the

combination on the central server. In order to show the

relationship between running time and the number of local

servers, we assume that the number of sources on each

local server is relatively balanced. We record all the running

time of different servers and take the maximum value as

the local running time tm = max{t1, t2, · · · , tL}. We also

record the running time tc on the central server. The final

running time t is equal to tm + tc. Figure 9 shows the

running time of DTD on all the three datasets. Note that

when the number of servers is 1, it actually denotes the

time of running on the whole datasets. Thus, we set the

time of combination as 0. From Figure 9, we can observe

that as the number of servers increases, the running time of

local server significantly decreases, and the aggregation time

in the center server increases steadily. However, the overall

running time is still lower than that on the whole dataset. It

illustrates that the proposed DTD can improve the efficiency

of truth discovery with the accuracy guarantee.

V. RELATED WORK

Truth discovery aims to resolve conflicts among the multi-

source information, which has attracted significant attentions

recently [1]–[9], [12], [13], [15], [20]–[25]. Truth Discovery

estimates reliability degrees of sources from the data and

infers the truth information simultaneously. The advantage

of truth discovery compared with naive methods such as

majority voting and averaging is that it incorporates the

reliability degrees of sources, instead of treating each source

equally.
In [8], the authors formulate the truth discovery problem

into a optimization framework (CRH) and plug in different

3UbTDa means that we first run UbTD on each local server and then
estimate the truths by averaging all the outputs of local servers.
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Figure 9: Running Time v.s. Number of Local Servers.

types of distance functions to tackle the heterogeneous

data. CATD [7] also formulates the problem into a op-

timization framework and incorporates the long-tail phe-

nomenon into the model. GTM [3] is a probabilistic model

which is designed for the continuous data. TruthFinder [5]

works on the categorical data and adopts the Bayesian-

based heuristic algorithm. AccuSim [4] considers source

correlations when sources are not independent and may

copy each other. Investment [19] follows the idea that

sources invest their reliability degrees into their claims.

3-Estimate [6] adopts the idea of complement votes and

considers the difficulty of getting the truth when computing

source weights. Dawid&Skene [1] and ZenCrowd [2] apply

the Expectation-Maximization technique to update source

weights and truths based on a confusion matrix. Unlike most

truth discovery methods, ETCIBoot [17] uses the bootstrap

procedure to provide confidence intervals instead of point

estimators of truths. In [9], the authors proposed a fine-

grained truth discovery method to handle the case that users

have the various expertises on different levels. However,

they only consider the topic differences among objects, and

our proposed method considers more general differences

brought by the inner and outer factors. In [14], [26], the

authors propose the parallel versions of the truth discovery

algorithms. However, their algorithms have to communicate

among servers in each iteration, which is not efficient and

easily causes the privacy concerns. The proposed distributed

truth discovery framework (DTD) only needs to upload the

estimated truths and variances from local servers to the

central server. This can protect data privacy well and largely

reduce the communication overhead.

VI. CONCLUSIONS

In the big data era, the huge volume of data are usually

stored in multiple servers. The information distributed across

the severs about the same object may be conflicting. In

order to infer the true information of objects, truth discovery

approaches can be applied. However, most of the existing

truth discovery methods cannot work under distributed en-

vironments, and they ignore the differences among objects,

which affects the accuracy of discovered truths. In order

to tackle the aforementioned challenges, we proposed a dis-

tributed truth discovery framework (DTD) which can resolve

conflicts among the data stored over distributed servers.

It only uploads each local server’s estimated truths to the

central server, and thus reduces the communication overhead

and protects the data privacy. In addition, we also design a

new algorithm named UbTD, which models the differences

among objects as uncertainty values. With the estimation

of uncertainty, UbTD provides robust and accurate results.

Experiments conducted on real world datasets show that our

DTD framework can efficiently provide accurate estimated

truths for distributed data. We also experimentally show that

UbTD improves the performance compared with the state-

of-the-art batch truth discovery approaches.
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crowd: leveraging probabilistic reasoning and crowdsourcing
techniques for large-scale entity linking,” in WWW, 2012, pp.
469–478.

[3] B. Zhao and J. Han, “A probabilistic model for estimating
real-valued truth from conflicting sources,” QDB, 2012.

[4] X. L. Dong, L. Berti-Equille, and D. Srivastava, “Integrating
conflicting data: the role of source dependence,” PVLDB,
vol. 2, no. 1, pp. 550–561, 2009.

[5] X. Yin, J. Han, and S. Y. Philip, “Truth discovery with
multiple conflicting information providers on the web,” IEEE
TKDE, vol. 20, no. 6, pp. 796–808, 2008.

514



[6] A. Galland, S. Abiteboul, A. Marian, and P. Senellart, “Cor-
roborating information from disagreeing views,” in WSDM.
ACM, 2010, pp. 131–140.

[7] Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas, W. Fan,
and J. Han, “A confidence-aware approach for truth discovery
on long-tail data,” PVLDB, vol. 8, no. 4, pp. 425–436, 2014.

[8] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resolving
conflicts in heterogeneous data by truth discovery and source
reliability estimation,” in SIGMOD, 2014, pp. 1187–1198.

[9] F. Ma, Y. Li, Q. Li, M. Qiu, J. Gao, S. Zhi, L. Su, B. Zhao,
H. Ji, and J. Han, “Faitcrowd: Fine grained truth discovery
for crowdsourced data aggregation,” in SIGKDD, 2015, pp.
745–754.

[10] S. Yao, M. T. Amin, L. Su, S. Hu, S. Li, S. Wang, Y. Zhao,
T. Abdelzaher, L. Kaplan, C. Aggarwal, and A. Yener, “Re-
cursive ground truth estimator for social data streams,” in
IPSN, 2016, pp. 1–12.

[11] B. Zhao, B. I. Rubinstein, J. Gemmell, and J. Han, “A
bayesian approach to discovering truth from conflicting
sources for data integration,” PVLDB, vol. 5, no. 6, pp. 550–
561, 2012.

[12] Z. Zhao, J. Cheng, and W. Ng, “Truth discovery in data
streams: A single-pass probabilistic approach,” in CIKM,
2014, pp. 1589–1598.

[13] S. Zhi, B. Zhao, W. Tong, J. Gao, D. Yu, H. Ji, and J. Han,
“Modeling truth existence in truth discovery,” in SIGKDD,
2015, pp. 1543–1552.

[14] R. W. Ouyang, L. M. Kaplan, A. Toniolo, M. Srivastava,
and T. J. Norman, “Parallel and streaming truth discovery in
large-scale quantitative crowdsourcing,” IEEE TPDS, vol. 27,
no. 10, pp. 2984–2997, 2016.

[15] Y. Li, Q. Li, J. Gao, L. Su, B. Zhao, W. Fan, and J. Han,
“On the discovery of evolving truth,” in SIGKDD, 2015, pp.
675–684.

[16] D. P. Bertsekas, Nonlinear programming. Athena scientific
Belmont, 1999.

[17] H. Xiao, J. Gao, Q. Li, F. Ma, L. Su, Y. Feng, and A. Zhang,
“Towards confidence in the truth: A bootstrapping based truth
discovery approach,” in SIGKDD, 2016, pp. 1935–1944.

[18] M. Wan, X. Chen, L. Kaplan, J. Han, J. Gao, and B. Zhao,
“From truth discovery to trustworthy opinion discovery:
An uncertainty-aware quantitative modeling approach,” in
SIGKDD, 2016, pp. 1885–1894.

[19] J. Pasternack and D. Roth, “Knowing what to believe (when
you already know something),” in Coling, 2010, pp. 877–885.

[20] X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivastava,
“Truth finding on the deep web: Is the problem solved?” in
PVLDB, vol. 6, no. 2, 2012, pp. 97–108.

[21] F. Ma, C. Meng, H. Xiao, Q. Li, J. Gao, L. Su, and
A. Zhang, “Unsupervised discovery of drug side-effects from
heterogeneous data sources,” in SIGKDD, 2017, pp. 967–976.

[22] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Mur-
phy, T. Strohmann, S. Sun, and W. Zhang, “Knowledge vault:
A web-scale approach to probabilistic knowledge fusion,” in
SIGKDD. ACM, 2014, pp. 601–610.

[23] H. Zhang, Q. Li, F. Ma, H. Xiao, Y. Li, J. Gao, and L. Su,
“Influence-aware truth discovery,” in CIKM, 2016, pp. 851–
860.

[24] Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan,
and J. Han, “A survey on truth discovery,” SIGKDD Explor.
Newsl., vol. 17, no. 2, pp. 1–16, 2016.

[25] H. Xiao, J. Gao, Z. Wang, S. Wang, L. Su, and H. Liu,
“A truth discovery approach with theoretical guarantee,” in
SIGKDD, 2016, pp. 1925–1934.

[26] C. Meng, W. Jiang, Y. Li, J. Gao, L. Su, H. Ding, and
Y. Cheng, “Truth discovery on crowd sensing of correlated
entities,” in Sensys, 2015, pp. 169–182.

APPENDIX

A. Proof of Theorem 3.1
Proof: For the continuous distribution, the variance σ̂l2

n can
be defined as

σ̂l2
n =

∫
(x− μ̂l

n)
2fn(x)dx (9)

where μ̂l
n is the estimated truth of claims on the n-th object

in the local serve l, and fn(·) is the density function of the
underlying distribution on the n-th object. Let μn be the mean
of the underlying distribution on the object n, and we have

σ̂l2
n =

∫
(x− μn + μn − μ̂l

n)
2fn(x)dx

=

∫
(x− μn)

2fn(x)dx︸ ︷︷ ︸
T1

+

∫
2(x− μn)(μn − μ̂l

n)fn(x)dx︸ ︷︷ ︸
T2

+

∫
(μn − μ̂l

n)
2fn(x)dx.︸ ︷︷ ︸

T3

(10)

In Eq. (10), for the first term, according to Eq. (9), we have that
T1 is the variance of the underlying distribution, i.e.,

T1 =

∫
(x− μn)

2fn(x)dx = σ2
n.

For the second term, we have

T2 =

∫
2(x− μn)(μn − μ̂l

n)fn(x)dx

=2(μn − μ̂l
n)

∫
(x− μn)fn(x)dx

=2(μn − μ̂l
n)

( ∫
xfn(x)dx− μn

)
,

where μn =
∫
xfn(x)dx, and thus, the value of T2 is 0. For the

last term, since (μn − μ̂l
n)

2 is a constant, we have

T3 =

∫
(μn − μ̂l

n)
2fn(x)dx = (μn − μ̂l

n)
2.

Thus, we have

σ̂l2
n = T1 + T2 + T3 = σ2

n + (μn − μ̂l
n)

2.
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